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Bottom-up inventory estimate = 


1 wellhead    x   wellhead emission factor   + 

1 separator   x   separator emission factor  + 

1 tank           x   tank emission factor            
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Event detection:

When is an emission happening?


Localization:

Where is the emission coming from?


Quantification:

How much is being emitted?



Chapter 4:

Multi-source emission detection, localization, and quantification
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Model hierarchy
Assume a multiple linear regression model at the data level

Concentration 
observations


from CMS sensors

Simulated concentrations 
from forward model, with 
each column assuming a 

different source

Emission rates for 
each source

n = number of observations

p = number of potential sources
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y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

Gaussian

white noise

Autocorrelation 
coefficient
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

This gives us:  y ∼ N(Xβ, σ2R)



Model hierarchy
Given an AR(1) process for , the correlation matrix isϵ

n = number of observations

p = number of potential sources
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R =

1 r r2 . . . rn−1

r 1 r . . . ⋮
r2 r 1 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 . . . . . . . . . 1



Model hierarchy
Given an AR(1) process for , the correlation matrix isϵ
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R =

1 r r2 . . . rn−1

r 1 r . . . ⋮
r2 r 1 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 . . . . . . . . . 1

which has closed form expressions for the inverse and determinant:

R−1 =
1

(1 − r2)

1 −r 0 . . . 0
−r 1 + r2 −r . . . ⋮
0 −r 1 + r2 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮
0 . . . . . . . . . 1

|R | = (1 − r2)n−1and

n = number of observations

p = number of potential sources



Model hierarchy
y = Xβ + ϵ

“Slab” 
component is 
non-negative

Proportion of 
samples where 

 gives 
posterior 

probability that 
source  is 
emitting

zi = 1

i
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Spike-and-slab 
prior allows 

samples to be 
identically zero

ai, bi, ci, di 
can 

contain 
operator 
insight

The remainder of the hierarchy takes the following form

ϵ ∼ N(0,σ2R)
Data-level:

n = number of observations

p = number of potential sources



Model hierarchy
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Sampling from the posterior
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We can derive Gibbs updates for all parameters except . ν

Iterative samples from each 
full conditional gives you 
samples from the joint 

posterior!



Model evaluation on multi-source controlled release data
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337 controlled releases:

• 99 (29%) single-source

• 238 (71%) multi-source

Emission rates range from 
0.08 to 7.2 kg/hr

Emission durations range from 
0.5 to 8 hours

Methane Emissions Technology Evaluation Center (METEC)
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Simulation study
Vary the degree of autocorrelation

For each controlled release, replace actual concentration 
observations with

where  are the true emission rates and are errors 
that follow an AR(1) process.

βT
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Simulation study
Vary the degree of spike misalignment

For each controlled release, replace actual concentration 
observations with

but move a given percent of the spikes in the fake 
observations to a different time during the release.
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Simulation study
Vary the degree of spike misalignment

For each controlled release, replace actual concentration 
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Simulation study For each controlled release, replace actual concentration 
observations with

but move a given percent of the spikes in the fake 
observations to a different time during the release.

Vary the degree of spike misalignment
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A Bayesian hierarchical model for methane emission source apportionment. 

William Daniels, Douglas Nychka, Dorit Hammerling. 

Annals of Applied Statistics, submitted, (2025).

30

CMS Series #3:

Multi-source emission detection, localization, and quantification



Thank you!


