CMS Series #3: Modeling multisource methane emissions on oil and gas sites

William Daniels

Department of Applied Mathematics and Statistics

Example production oil and gas site

Example production oil and gas site

100 ft

Continuous monitoring system (CMS)

Example production oil and gas site

100 ft

Continuous monitoring system (CMS)

Chapter 4:

Multi-source emission detection, localization, and quantification

CMS sensor "Continuous monitoring system"

The multi-source continuous monitoring inverse problem

Assume a multiple linear regression model at the data level

$$y = X\beta + \epsilon$$

$$y \equiv \{y_1, \dots, y_n\}, \beta \equiv \{\beta_1, \dots, \beta_p\}, X \in \mathbb{R}^{n \times p}$$
Concentration
observations
from CMS sensors
$$Simulat
from for
each source$$

n = number of observations p = number of potential sources

$$= X\beta + \epsilon$$

ted concentrations orward model, with column assuming a different source

Assume a multiple linear regression model at the data level

$$y \equiv \{y_1, \dots, y_n\}, \beta \equiv \{\beta_1, \dots, \beta_p\}, X \in \mathbb{R}^{n \times p}$$

Assume that the errors $\epsilon \equiv \{\epsilon_1, \ldots, \epsilon_n\}$ are are identically distributed, Gaussian, and autocorrelated such that

n = number of observations p = number of potential sources

 $v = X\beta + \epsilon$

 $\epsilon \sim N(0,\sigma^2 R)$

Assume a multiple linear regression model at the data level

$$y \equiv \{y_1, \dots, y_n\}, \beta \equiv \{\beta_1, \dots, \beta_p\}, X \in \mathbb{R}^{n \times p}$$

Assume that the errors $\epsilon \equiv \{\epsilon_1, \ldots, \epsilon_n\}$ are are identically distributed, Gaussian, and autocorrelated such that

Let the errors follow an AR(1) process such that

n = number of observations p = number of potential sources

 $v = X\beta + \epsilon$

Assume a multiple linear regression model at the data level

$$y \equiv \{y_1, \dots, y_n\}, \beta \equiv \{\beta_1, \dots, \beta_p\}, X \in \mathbb{R}^{n \times p}$$

Assume that the errors $\epsilon \equiv \{\epsilon_1, \ldots, \epsilon_n\}$ are are identically distributed, Gaussian, and autocorrelated such that

 $\epsilon \sim N(0,\sigma^2 R)$

Let the errors follow an AR(1) process such that

This gives us: $y \sim N(X\beta, \sigma^2 R)$

n = number of observations p = number of potential sources

 $v = X\beta + \epsilon$

 $\epsilon_i = r\epsilon_{i-1} + w$

Given an AR(1) process for ϵ , the correlation matrix is

n = number of observations p = number of potential sources

Given an AR(1) process for ϵ , the correlation matrix is

$$R = \begin{bmatrix} 1 \\ r \\ r^2 \\ \vdots \\ r^{n-1} \end{bmatrix}$$

which has closed form expressions for the inverse and determinant:

$$R^{-1} = \frac{1}{(1 - r^2)} \begin{bmatrix} 1 & -r & 0 & \dots & 0 \\ -r & 1 + r^2 & -r & \dots & \vdots \\ 0 & -r & 1 + r^2 & \dots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 1 \end{bmatrix}$$

n = number of observations p = number of potential sources

and
$$|R| = (1 - r^2)^{n-1}$$

Data-level:

$$y = X\beta + \epsilon$$

$$\epsilon \sim N(0, \sigma^2 R)$$

The remainder of the hierarchy takes the following form

Spike-and-slab prior allows samples to be identically zero

Proportion of samples where $z_i = 1$ gives posterior probability that source *i* is emitting

 $z_i \sim \text{Bernoulli}(\theta_i)$ $\theta_i \sim \text{Beta}(a_i, b_i) \blacktriangleleft$ n = number of observations p = number of potential sources

 $\mathbf{P}_{i} \sim \begin{cases} 0, & z_{i} = 0 \\ \operatorname{Exp}(\tau_{i}^{2}\sigma^{2}), & z_{i} = 1 \end{cases}$ "Slab" component is non-negative a_i, b_i, c_i, d_i can $\tau_i^2 \sim \text{Inv-Gamma}(c_i, d_i) \blacktriangleleft$ contain $\sigma^2 \sim \text{Inv-Gamma}(\nu/2, \nu/2)$ operator insight $\nu \sim \text{Inv-Gamma}(\alpha_1, \alpha_2)$ $r \sim \text{Uniform}(0, 1)$

$$\beta_i \sim \begin{cases} 0, & z_i = 0\\ \operatorname{Exp}(\tau_i^2 \sigma^2), & z_i = 1 \end{cases}$$
$$z_i \sim \operatorname{Bernoulli}(\theta_i)$$
$$\theta_i \sim \operatorname{Beta}(a_i, b_i)$$
$$\tau_i^2 \sim \operatorname{Inv-Gamma}(c_i, d_i)$$
$$\sigma^2 \sim \operatorname{Inv-Gamma}(\nu/2, \nu/2)$$
$$\nu \sim \operatorname{Inv-Gamma}(\alpha_1, \alpha_2)$$
$$r \sim \operatorname{Uniform}(0, 1)$$

Sampling from the posterior

We can derive Gibbs updates for all parameters except ν .

$$\begin{split} \theta_{i} | \xi \sim & \text{Beta}(z_{i} + a_{i}, 1 - z_{i} + b_{i}) \\ \sigma^{2} | \xi \sim & \text{Inv-Gamma} \left(\frac{\nu}{2} + \frac{n}{2}, \frac{\nu}{2} + \frac{1}{2} (y - X\beta)^{T} R^{-1} (y - X\beta) \right) \\ r | \xi \sim & \left\{ \mathcal{N}(X\beta, \sigma^{2}R) & 0 < r < 1 \\ 0 & \text{otherwise} \end{array} \right. \\ \tau_{i}^{2} | \xi \sim & \text{Inv-Gamma} \left(z_{i} + c_{i}, \frac{\beta_{i}}{\sigma^{2}} + d_{i} \right) \\ \beta_{i} | \xi \sim & \left\{ \begin{array}{c} 0 & z_{i} = 0 \\ \mathcal{N} \left(\left(\frac{X^{T} R^{-1} X}{\sigma^{2}} \right)^{-1} \left(\frac{X^{T} R^{-1} y}{\sigma^{2}} - \frac{e_{i}}{\tau_{i}^{2} \sigma^{2}} \right), \left(\frac{X^{T} R^{-1} X}{\sigma^{2}} \right)^{-1} \right) \\ z_{i} = 1 \end{array} \right. \\ z_{i} | \xi \sim & \text{Bernoulli} \left(1 - \frac{1 - \theta_{i}}{\left(1 - \theta_{i} \right) + \theta_{i} \left(\frac{1}{\tau_{i}^{2} \sigma^{2}} \right) \exp \left(\frac{\left(\frac{\sum_{j=1}^{n} (w_{j} X_{j,i}^{*} + w_{j}^{*} X_{j,i}) - \frac{2}{\tau_{i}^{2}} \right)^{2}}{4\sigma^{2} \sum_{j=1}^{n} X_{j,i} X_{j,i}^{*}} \right) \left(\frac{2\sigma^{2}\pi}{\sum_{j=1}^{n} X_{j,i} X_{j,i}^{*}} \right)^{1/2} \left(\frac{1}{2} \right) \\ \mathcal{N} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{2\sigma^{2}\pi}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{2\sigma^{2}\pi}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{2\sigma^{2}\pi}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{2\sigma^{2}\pi}{2} \right)^{1/2} \left(\frac{1}{2} \right) \\ \mathcal{N} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{2\sigma^{2}\pi}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{2\sigma^{2}\pi}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$$

 $\nu | \xi \sim ?$ (Use a Metropolis–Hastings step)

es from each al gives you m the joint rior!

Model evaluation on multi-source controlled release data

Methane Emissions Technology Evaluation Center (METEC)

337 controlled releases:

- 99 (29%) single-source
- 238 (71%) multi-source

Emission rates range from **0.08** to **7.2** kg/hr

Emission durations range from **0.5** to **8** hours

For each controlled release, replace actual concentration observations with

Vary the degree of autocorrelation

where β_T are the true emission rates and are errors that follow an AR(1) process.

$$\tilde{y} = X\beta_T + \tilde{\epsilon}$$

Vary the degree of autocorrelation

where β_T are the true emission rates and are errors that follow an AR(1) process.

For each controlled release, replace actual concentration observations with

$$\tilde{y} = X\beta_T + \tilde{\epsilon}$$

Vary the degree of autocorrelation

where β_T are the true emission rates and are errors that follow an AR(1) process.

For each controlled release, replace actual concentration observations with

$$\tilde{y} = X\beta_T + \tilde{\epsilon}$$

Vary the degree of spike misalignment

20 Observations Concentration [ppm] Background-removed observations 15 Gaussian puff 10 S 20 40 0

For each controlled release, replace actual concentration observations with

$$\tilde{y} = X\beta_T + \tilde{\epsilon}$$

but move a given percent of the spikes in the fake observations to a different time during the release.

Vary the degree of spike misalignment

For each controlled release, replace actual concentration observations with

$$\tilde{y} = X\beta_T + \tilde{\epsilon}$$

but move a given percent of the spikes in the fake observations to a different time during the release.

Vary the degree of spike misalignment

For each controlled release, replace actual concentration observations with

$$\tilde{y} = X\beta_T + \tilde{\epsilon}$$

but move a given percent of the spikes in the fake observations to a different time during the release.

Model evaluation on multi-source controlled release data

Model evaluation on multi-source controlled release data

CMS Series #3: Multi-source emission detection, localization, and quantification

A Bayesian hierarchical model for methane emission source apportionment. William Daniels, Douglas Nychka, Dorit Hammerling. *Annals of Applied Statistics,* submitted, (2025).

