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Why do we care about methane? GWP:

global warming
potential

Methane Is a potent greenhouse gas

Global concentrations are increasing

Global Monthly Mean CHgy
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Why do we care about methane? lobal warming

potential

Methane Is a potent greenhouse gas

Global concentrations are increasing

Relatively short lifetime

CH4 lifetime = 9 years 84X%VC\§2P é)\]/‘er a
CO2 lifetime = 300-1000 years 20 year period
GWP of
Effect of CH4 emission 12 86‘ Segﬁ 32%23

reductions will be felt
within our lifetimes!




Why do we care about methane”

Methane Is a potent greenhouse gas

Global concentrations are increasing

Relatively short lifetime

Recent regulatory push

United States

H. R. 5376 (Inflation Reduction Act)

SEC. 136. (a) The Administrator shall
impose and collect a fee from the
owner or operator of each applicable
facility that 1s required to report
methane emissions ..

SEC. 136. (g)(2) .. calculation of fees
under subsection (c¢) of this section,
are based on empirical data and
accurately reflect the total methane
emissions from the applicable
facilities.
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Why do we care about methane”

Methane Is a potent greenhouse gas

Global concentrations are increasing

Relatively short lifetime

Recent regulatory push

Amendments adopted by the European
Parliament on 9 May 2023 on the
proposal for a regulation of the
European Parliament

. lmporters must provide a report

with the following information for
each site from which the import to the
Union has taken place ..

.. information specifying the
exporter’'s, or where relevant, the
producer’s direct measurements of
site-level methane emissions,
conducted by independent service
provider ..

———————......

European
Union



Why do we care about methane”

Methane Is a potent greenhouse gas

Global concentrations are increasing

Relatively short lifetime

Recent regulatory push

The O0il & Gas Methane Partnership 2.0
(OGMP 2.0)

Level 5 — Emissions reported similarly
to Level 4, but with the addition of
site-level measurements (measurements
that characterize site-level emissions
distribution for a statistically |

representative population)
T ————nau

Global Initiatives



GLOBAL METHANE BUDGET 2008-2017 SJOIO

CHANGE IN
ATMOSPHERIC ABUNDANCE TOTAL SINKS

155

TOTAL EMISSIONS

Bottom-up Top-down /37 576 625 556
view (BU) view (TD) (594-880) (550-594) (500-798)(501-574)
4 N
128 117 206 217 30 30 149 181 222 37 595 518 30 38
(113-154) (81-131) (191-223) (207-240) (26-40) (22-36) (102-182) (159-200) (143-306)(21-50) (489-749) (474-532) (11-49) (27-45)
. Sink from
‘ chemical reactions
i 4 in the atmosphere
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' : Biomass and biofuel ink in soi
Fos.5|l fuel Agriculture and waste loma | Wetlands Other n.atural L Sink in soils
production and use burning emissions

Inland waters, geological,
oceans, termites, wild animals,

EMISSIONS AND SINKS permafrost, vegetation ctosaillcnrnasn
In teragrams of CH, per year (Tg CH, yr-1) average over 2008-2017 PROJECT

* The observed atmospheric growth rate is 18.2 (17.3-19) Tg CH,4 yr-1. The difference with the TD budget imbalance reflects uncertainties in capturing the observed growth rate.

Natural and anthropogenic fluxes



Example production oll and gas site
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Example production oll and gas site
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Example production oll and gas site
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Example production oll and gas site
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Example production oll and gas site
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Example production oll and gas site
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Example production oll and gas site
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Chapter 1:
Single-source emission detection, localization, and quantification
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The continuous monitoring inverse problem

©

19



©

CMS sensor

/

“Continuous
monitoring
system”

©

-—p

Separator

]

Wellhead

Tank

-
L
S~
O)
=,
O
e
Y]
.
-
O
)]
R
&
LLI

e = tank emission

20



Concentration [ppm]
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remc?val » Simulation » Localization »
and event detection

STEP 4:
Quantification
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remqval » Simulation » Localization »
and event detection

STEP 4:
Quantification
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Gaussian puff atmospheric dispersion model

Total volume
of methane
contained In

puff p \

O (x — ur)* + y* (- H)
cp(x, v,2,1,0) = (2ﬂ)3/2026Z exp (— 52 ) [eXP <_ 7 52 > + eXp (_

Y

Concentration Decay in puff Decay in puff
contribution of concentration concentration
puff p In horizontal In vertical

plane (x, y) dimension (z)




Gaussian puff atmospheric dispersion model

P
Total volume Total c(x _

9yazat9Q)_ C(XayazataQ)
of methane concentration — ; p
contained in at (x. v, 2, 1) V

puff p \
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Simulated Methane Concentration [ppm]
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Repeat this for all other potential sources!



Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remqval » Simulation » Localization »
and event detection

STEP 4:
Quantification
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- Background-removed observations
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((((E))) @E))) Pick source estimate using
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remqval » Simulation » Localization »
and event detection

STEP 4:
Quantification
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Simulation is a linear function of emission rate

Volume of methane contained in puff p

l

_ 1 (x — ut)* +y° (x— H)
Cp(X, v, Z, 1, Q) — Q (271')3/26)%6Z CXP (_ 26)% ) [exp (_ 202
!

Concentration
contribution of puff p

P

c(X,y,2,1,0) = Z (X, ¥, 2,1, Q)

T .

Total concentration
at (x,v,2,1)
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Simulation is a linear function of emission rate

Volume of methane contained in puff p

l

_ ! (x = ut + 5 -~ HY @+ H)
cp(x, Y, 2,1, 0) = 0 (27)3 /20-y2cfz exXp (— 20_y2 ) [exp (— 2022 ) + exp (— H GZQ )]
!

Concentration
contribution of puff p

Concentration
data

. .
c(x,v,2,t,0) = Z cp(x, v, 2,1, 0) » Q = argmin {% Z (d(x, v,2, 1) —c(x,y,7,t, Q)>2}
_ Q0 =1
b I I

Total concentration Emission rate Simulated
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remqval » Simulation » Localization »
and event detection

STEP 4:
Quantification
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Evaluation on single-source controlled releases

85 single-source controlled releases

S §l -' 2 East | L
West Wellhead > st Separator Emission rates range from

0.2 to0 6.4 kg/hr

West Separator

Emission durations range from
East  ° 0.5 to 8.25 hours

Wellhead

Methane Emissions Technology Evaluation Center (METEC)
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Evaluation on single-source controlled releases

Correctly detected
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Correctly localized
emission

Event-level false positive rate: 5.5%
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Evaluation on single-source controlled releases

Estimated Emission Rate [kg/hr]
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Chapter 1:
Single-source emission detection, localization, and quantification

Concluding thoughts:
* Framework is already being used by some CMS technology vendors.

Detection, localization, and quantification of single-source methane emissions on oil and gas production sites

using point-in-space continuous monitoring systems.

William Daniels, Meng Jia, Dorit Hammerling.
Elementa: Science of the Anthropocene, 12 (1), 00110, (2024).

Filling a critical need: a lightweight and fast Gaussian puff model implementation.

Meng Jia, Ryker Fish, William Daniels, Brennan Sprinkle, Dorit Hammerling.
Scientific Reports, in revision, (2024).
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Chapter 2:
Reconciling aerial measurements and bottom-up inventories
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CMS can explain the
gap between bottom-up
inventory and top-down

aerial measurements
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Chapter 2:
Reconciling aerial measurements and bottom-up inventories

Concluding thoughts:

* Multi-scale measurements are complementary.
 Measurements at high temporal resolution are valuable, especially for site-level analysis.

Towards multiscale measurement-informed methane inventories: reconciling bottom-up site-level inventories with

top-down measurements using continuous monitoring systems.
William Daniels, Jiayang (Lyra) Wang, Arvind Ravikumar, Matthew Harrison, Selina Roman-White, Fiji George, Dorit Hammerling.
Environmental Science and Technology, 57(32), 11823-11833, (2023).

Multi-scale methane measurements at oil and gas facilities reveal necessary framework for improved emissions

accounting.
Jiayang (Lyra) Wang, William Daniels, Dorit Hammerling, Matthew Harrison, Kaylyn Burmaster, Fiji George, Arvind Ravikumar.

Environmental Science and Technology, 56(20), 14743-14752, (2022).
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Chapter 3:
Intercomparison of CMS solutions
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Finding #1: Raw concentration data different between co-located sensors
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Finding #2: Quantification estimates vary dramatically at the 30-minute scale

Solutions A and B: Vendor Comparison
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Finding #2: Quantification estimates vary dramatically at the 30-minute scale

Solutions A and B:

Solutions A and B: Vendor Comparison Open-Source Comparison
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Finding #3: Quantification estimates begin to align at the month-scale

Solutions A and B: Vendor Comparison
|
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Finding #3: Quantification estimates begin to align at the month-scale

Solutions A and B: Vendor Comparison
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Finding #4: Similar sites do not necessarily have similar emissions
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Chapter 3:
Intercomparison of CMS solutions

Concluding thoughts:

* Important to assess CMA performance in the field in addition to controlled releases.

* Current CMS solutions may be more useful when data is aggregated at hourly or monthly
scales.

Intercomparison of three continuous monitoring systems on operating oil and gas sites.

William Daniels”, Spencer Kidd*, Lydia (Shuting) Yang, Shannon Stokes, Arvind Ravikumar, Dorit Hammerling.
ACS ES&T Air, in press, (2024).
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Chapter 4:
Multi-source emission detection, localization, and quantification
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MOdel hierarChy n = number of observations

p = humber of potential sources
Assume a multiple linear regression model at the data level

y=X0+¢€

y = {yl""9yn}9ﬁ5 {ﬁl,...,ﬁp},XE[ nxp

/ \

Simulated concentrations

Emission rates for from forward model, with

each source each column assuming a
different source

Concentration
observations
from CMS sensors
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Model hierarchy

N = number of observations
P = number of potential sources

Assume a multiple linear regression model at the data level

Y= {1V

Assume that the errors € = {€, ...

autocorrelated such that

y=Xp+e¢

Vb BEAP .. B L X € RYP

, €, } are are identically distributed, Gaussian, and

e ~ N(0,6°R)

/1



MOdel hierarChy n = number of observations

p = humber of potential sources
Assume a multiple linear regression model at the data level

y=Xp+e¢

y = {y19°°°9yn}9ﬁ5 {ﬁl,...,ﬁp},XE[ nxp

Assume that the errors € = {¢y,...,€,} are are identically distributed, Gaussian, and
autocorrelated such that

e ~ N(0,6°R)

Let the errors follow an AR(1) process such that

€, =re_;+w

7N

Autocorrelation (Gaussian

coefficient white noise
/2



MOdel hierarChy n = number of observations

p = humber of potential sources
Assume a multiple linear regression model at the data level

y=Xp+e¢

y = {yl"”?yn}aﬁz {ﬁl,...,ﬁp},XE[ nxp

Assume that the errors € = {¢y,...,€,} are are identically distributed, Gaussian, and
autocorrelated such that

e ~ N(0,6°R)
Let the errors follow an AR(1) process such that

€, =re_;+w
This gives us: y ~ N(X/3, 6°R)

/3



Model hierarchy

Given an AR(1) process for €, the correlation matrix is

n—1

N = number of observations
P = number of potential sources
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Model hierarchy

Given an AR(1) process for €, the correlation matrix is

1 —r 0 0
1 —r 1+ —r
R™! = 1 - 12) 0 —r 147’

and

N = number of observations
P = number of potential sources

R|=(1- 2!

/5



MOdel hierarChy n = number of observations

p = number of potential sources
Data-level: y=Xp +¢

e ~ N(0,6°R)
The remainder of the hierarchy takes the following form

Spike-and-slab

prior allows 0 5 = () “Slab”
lsamples tobe ———> 3, ~ ’ 2 2 component is
identically zero Exp(770°), zi =1 ¢——

non-negative

L z; ~ Bernoulli(6;)
roportion o

.y . h. ai, bi, Ci, d;
samples where 0; ~ Beta(a;, b;) «+—————

can
z; = 1 gives 'rz-z ~ Inv-Gamma(c;, d ) 4¢—— contain
posterior 9 operator
orobability that 0 ~ Inv-Gamma(v/2, v/2) insight
source i is v ~ Inv-Gamma(aq, as)

emitting r o~ UnifOI‘m(Oa 1)
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Model hierarchy

,B' O, Ly — 0
Z EXp( 2 2) i =

z; ~ Bernoulli(6;)
97; s Beta(ai, b)

77 ~ Inv-Gamma(c;, d;)

0* ~ Inv-Gamma(v/2, v/2)
v ~ Inv-Gamma(aq, as)
r ~ Uniform(0, 1)

’r’



Sampling from the posterior

We can derive Gibbs updates for all parameters except v.

02|§ ~ Beta(z,; +a;,1 —z; + bz)

vV mn vV 1

| ~(y—XB)"R ' (y— Xﬂ))

0°|¢ ~ Inv-Gamma (

lterative samples from each

2 22 2 full conditional gives you
N(XB,02R) 0<r<1 samples from the joint
rie ~ 0 otherwise posterior!
T,L-Qlf ~ Inv-Gamma (zi + ¢;, ﬂ—; -+ dz-)
o)
0 Zp — 0
PRV (5 2) 7 (8 ), ()T s
1 — 0,
z;|€ ~ Bernoulli | 1 -
(1—6,) +6; (#) exp (( J’=1(w"Xﬂ"i+wiX"’i)_?) ) ( 202 )1/2 (1)
i i\ 7252 1237 XX, X5, X5 4 2

vl ~7 (Use a Metropolis—Hastings step)



Model evaluation on multi-source controlled release data

337 controlled releases:
* 99 (29%) single-source
e 238 (71%) multi-source

Separator

Emission rates range from
0.08 to 7.2 kg/hr

Emission durations range from
0.5 to 8 hours

Methane Emissions Technology Evaluation Center (METEC)
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Emission rate [kg/hr]

Methane concentration [ppm]

Model evaluation on multi-source controlled release data

d
0 — . .
True emission B Tank
o state B West Wellhead
1 West Separator
o B East Wellhead
East Separator
N —
o
b
o _
(o
v _
2
o
4P
0
O —

I
0:00

I
4:00

| I
8:00

I
12:00

I
16:00

I I
20:00 0:00

Wind speed [m/s]

Wind direction

S
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4
|

3
|

2
I

1
I

I

|
0:00

I
4:00

I
8:00

|
12:00

I
16:00

I
20:00

0:00
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Simulation study

Vary the degree of autocorrelation

For each controlled release, replace actual concentration
observations with

y=XpPr+e€

where [ are the true emission rates and are errors
that follow an AR(1) process.

81



12

0.50 1.00

0.00

Simulation study

Vary the degree of autocorrelation

Error variance [kg/hr]

For each controlled release, replace actual concentration

observations with

where [ are the true emission rates and are errors

y = XpPr+e€

that follow an AR(1) process.

_______________________________________________ i
N -~ -2- =
Autocorrelation coefficient
e e Sa—
__ @ . SRS t _____
S | s g I_ _____
I -
B =
| | ! | |
0 0.25 0.5 0.75 0.95

Autocorrelation coefficient

<+— [rue parameter value
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12

0.50 1.00

0.00

Simulation study

Vary the degree of autocorrelation

Error variance [kg/hr]

For each controlled release, replace actual concentration

observations with

Y

— XBp + ¢

where [ are the true emission rates and are errors
that follow an AR(1) process.

_______________________________________________ i
N -~ -2- =
Autocorrelation coefficient
e e Sa—
__ @ . SRS I. _____
S | s g I_ _____
I -
B -
| | | | |
0 0.25 0.5 0.75 0.95

Autocorrelation coefficient

0.7 1.00 -1.5 0.0 1.5

0.50

Emission rate error: estimated - true [kg/hr]

o] ] e e

Coverage

0.25 0.5 0.75
Autocorrelation coefficient

0.95
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Model evaluation on multi-source controlled release data

10

. a True emission state M Tank
€ o B West Wellhead
D B West Separator
Ny B East Wellhead
§ © - B East Separator
s Y-
3
2 o~ -
LL

o —

o _
IE
S © -
ﬁ
0 _
s © {
m ‘
S < - \
-a ',"ﬂ
2 \
2 o~ -
LL

o |

| | | | |

Feb 12 Feb 13 Feb 14 Feb 15 Feb 16 Feb 17
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Total emissions [metric tons]

Model evaluation on multi-source controlled release data

a Site-level and source-level
emission inventories

Upper bound: 12.6

EECEENR B

L

e Truth (line)

Estimate (box)

Site Total

Tank

West Wellhead
West Separator
East Wellhead
East Separator

i

090,0 S %o|o g.A°I° \Agolo \2.\0Io A%'Golo

Percent error in quantification totals

Frequency [thousands]

b Site-level quantification errors

Average error = 0.05 kg/hr

O — I I

| I

I I

< — © | I
-

-&)I |

£ I

M — X I

QO |

I I

. I I

| I

I I

T | |

I l

o —d" ...;

-6

I I I
4 2 0 2 4

Estimated rate - true rate [kg/hr]

—_—
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Total emissions [metric tons]

Model evaluation on multi-source controlled release data

a Site-level and source-level
emission inventories

Upper bound: 12.6
,\ —
e Truth (line)
© @ Estimate (box)
o B Site Total
B Tank
-« B West Wellhead
1 West Separator
B East Wellhead
N I East Separator
N —
*
o —

oS & ga w0 (N0 o

Percent error in quantification totals

Frequency [thousands]

b Site-level quantification errors C Average number of correct
Average error = 0.05 kg/hr localization estimates = 4.06
_ ! l ©
- | | Example: 20.3%
I I we correctly
< — C_g I I — ~ 7| classify 2 out of 5
ol | O sources as either
= ' & emitting or not
@~ §' ' 3 7 emitting for 7% of
o | | = the inversion
~ : : % ~ | windows 21.7%
| | =
I l LT
T I l
I l
o N _I— ——— —
| | | | f | |
-6 -4 -2 0 2 4 6 0 1 2 3 4 9)

Number of correct localization
estimates per inversion window

Estimated rate - true rate [kg/hr]
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Simulation study

Vary the degree of spike misalignment

For each controlled release, replace actual concentration
observations with

Y= XPr+e€

but move a given percent of the spikes in the fake
observations to a different time during the release.

o
QN .
- (Observations :
e o - = = Background-removed observations :
g — | = Gaussian puff ,i
- ,.
O |
E2 - :
I= |
() |
o
C 10 —
o |
@
!
o —

60 80 100 120
Time [minutes]

87



1.00 100 300

0.50

0.00

For each controlled release, replace actual concentration

Simulation StUdy observations with
Vary the degree of spike misalignment j=XBr+é

but move a given percent of the spikes in the fake
observations to a different time during the release.

Error variance [kg/hr]

S — I .......... I .......... Yy X <+— True parameter value

Autocorrelation coefficient

0 12.5 25 37.5 50
Concentration enhancement misalignment [%]
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1.00 100 300

0.50

0.00

Simulation study

Vary the degree of spike misalignment

Error variance [kg/hr]

For each controlled release, replace actual concentration

observations with

y = XpPr+e€

but move a given percent of the spikes in the fake
observations to a different time during the release.

T (-

| S I __________ +
Autocorrelation coefficient S
Q)

™~

I I ]

.. - L == == == 5
| | | | | o

0 12.5 25 37.5

50

Concentration enhancement misalignment [%]

Emission rate error: estimated - true [kg/hr]
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|E—|
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=
=13
S
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K AT o N T T
H oo 9 ‘. o ®
m @ o o, O o o
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Site-level coverage from METEC pilot study - -

| | | | |

0 12.5 25 37.5 50

Concentration enhancement misalignment [%]
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Chapter 4.
Multi-source emission detection, localization, and quantification

To do before submission:

* Finish comparison to the other methods

A Bayesian hierarchical model for methane emission source apportionment.

William Daniels, Douglas Nychka, Dorit Hammerling.
Journal of the American Statistical Association, in preparation, (2024).
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Chapter 5:
Robust duration estimates
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AUTHENTICATED /
U.S. GOVERNMENT
INFORMATION -
GPO

A policy driven research project

50282 Federal Register/Vol. 88, No. 146/ Tuesday, August 1, 2023 /Proposed Rules

ENVIRONMENTAL PROTECTION
AGENCY

40 CFR Part 98

[EPA-HQ-OAR-2023-0234; FRL-10246—-01-
OAR]

RIN 2060—-AV83

Greenhouse Gas Reporting Rule:
Revisions and Confidentiality
Determinations for Petroleum and
Natural Gas Systems

AGENCY: Environmental Protection
Agency (EPA).
ACTION: Proposed rule.

SUMMARY: The Environmental Protection
Agency (EPA) is proposing to amend
requirements that apply to the
petroleum and natural gas systems
source category of the Greenhouse Gas
Reporting Rule to ensure that reporting
is based on empirical data, accurately
reflects total methane emissions and
waste emissions from applicable
facilities, and allows owners and
operators of applicable facilities to
submit empirical emissions data that
appropriately demonstrate the extent to
which a charge is owed. The EPA is also
proposing changes to requirements that

Federal eRulemaking Portal.
www.regulations.gov (our preferred
method). Follow the online instructions
for submitting comments.

Mail: U.S. Environmental Protection
Agency, EPA Docket Center, Air and
Radiation Docket, Mail Code 28221T,
1200 Pennsylvania Avenue NW,
Washington, DC 20460.

Hand Delivery or Courier (by
scheduled appointment only): EPA
Docket Center, WJC West Building,
Room 3334, 1301 Constitution Avenue
NW, Washington, DC 20004. The Docket
Center’s hours of operations are 8:30
a.m.—4:30 p.m., Monday-Friday (except
Federal holidays).

Instructions: All submissions received
must include the Docket Id. No. for this
proposed rulemaking. Comments
received may be posted without change
to www.regulations.gov/, including any
personal information provided. For
detailed instructions on sending
comments and additional information
on the rulemaking process, see the
“Public Participation” heading of the
SUPPLEMENTARY INFORMATION section of
this document.

The virtual hearing, if requested, will
be held using an online meeting
platform, and the EPA will provide
information on its website

EPA may publish any comment received
to its public docket. Do not submit to
the EPA’s docket at
www.regulations.gov any information
you consider to be confidential business
information (CBI), proprietary business
information (PBI), or other information
whose disclosure is restricted by statute.
Multimedia submissions (audio, video,
etc.) must be accompanied by a written
comment. The written comment is
considered the official comment and
should include discussion of all points
you wish to make. The EPA will
generally not consider comments or
comment contents located outside of the
primary submission (i.e., on the web,
cloud, or other file sharing system).
Commenters who would like the EPA to
further consider in this rulemaking any
relevant comments that they provided
on the 2022 Proposed Rule regarding
proposed revisions at issue in this
proposal must resubmit those comments
to the EPA during this proposal’s
comment period. Please visit
www.epa.gov/dockets/commenting-epa-
dockets for additional submission
methods; the full EPA public comment
policy; information about CBI, PBI, or
multimedia submissions, and general
guidance on making effective
comments.
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A policy driven research project

40 CFR Part 98:

Proposed updates to the EPA’s
Greenhouse Gas Reporting Program
(GHGRP) to take effect January 2025

.. also proposing a

| to align with the Oil and gas operators
super-emitter response program :
proposed in the NSPS O00Ob. These reqUII’ed to I’epOrt all methane
emissions are generally intermittent, emissions

with widely varying durations ..

.. also proposing that reporters would : :
provide the start date and time of the F0r eaCh Of these emI_SSIOnS’
release, , and the Operator Must estimate
the method used to determine the start an

date and time ..

T — B



Methane Concentration [ppm]
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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One problem... incomplete sensor coverage
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One problem... incomplete sensor coverage

West Wellhead

East Wellhead
West Separator

Wind
direction
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Wind
One problem... incomplete sensor coverage direction

Concentration [ppm]

West Wellhead

West Separator

i Concentration [opm]

CMS do not provide emission information when the wind blows between sensors
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Wind
However, we can estimate when this happens! direction

West Wellhead
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LV - ) 3 ’
u_ - - - "
< - . " o - -
L A - N -
»
f ‘ T
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-
-‘i’

O East Wellhead

Downwind region

Downwind region does not overlap with CMS sensors = period of "no information”
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Wind
However, we can estimate when this happens! direction
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Probabilistic Duration Model

Step 1: Identify naive events

Methane concentration [ppm]

60 80

40
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Naive event 1

|<—>l
' Naive event ,
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Probabilistic Duration Model

Step 1: Identify naive events

Methane concentration [ppm]

60 80

40

20

Example: we want a duration estimate
for naive event 1

Naive event 1
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Probabilistic Duration Model
Step 2: Identify periods of information

Methane concentration [ppm]

Information Information Information
(- i I i I
| . | - = | - | = -
. Naive event 1 . Information ; Naive event , information
| | | 2 |
| | | |
| | | |
o : ' : :
@ | | | |
| | | |
| | | |
| | | |
| | | |
| | | |
o 0 0 0 0
< 0 0 0 0
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| | | |
| | | |
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| | | |
| | | |
8 — | | | |
| | | |
| | | |
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| | |
i
o
| | | |
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Probabilistic Duration Model D1 49— g

Methane concentration [ppm]

N L i, -
Step 3: Compute probability of combining events Pys(q) — Ps5(q)
Information Information Information
o 0 i 0 0
0 — e No I —————P No
: Naive event 1 ' information | Naive event ; information
| | | 2 |
. q1=10kg/hr (tank) . : :
o 0 0 0 q2 — 12 0
O : : ' kg/hr (tank).
o : : : :
<1 0 I 0 i
o : : : :
N : : : :
O | | | |

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Time of day 106



Probabilistic Duration Model D1 49— g

Methane concentration [ppm]

. I,] o
Step 4: Sample start and end times Pys(q) — Ps(q)
Information Information Information
8 . ——— No — No
Naive event 1 iInformation ., Naive event information
2
q1 = 10 kg/hr (tank)
o qz =12
© kg/hr (tank)
o . Range of Range of
< Only possn]:c)cl)er possible possible
naive event 1 . for . for
naive event 1 naive event 2
o
N
o

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Time of day 107



Probabilistic Duration Model
Step 5: Compute distribution of durations

- Naive duration Mean of possible Max of possible
(3.1 hours) durations durations
(6.8 hours) (8.2 hours)

0.7

0.5

0.4

Density
0.3

0.2

0.1

0.0
|

| |
3 4 3 6 7 3

Emission event duration [hours] 108



Probabilistic Duration Model

We want the distribution of durations for naive event k.
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Probabilistic Duration Model

We want the distribution of durations for naive event k.

First, consider the simplest case where there is zero probability of combining with neighboring
events.

S, ~ Unif(,) and E, ~ Unif(,")

Here the durations are simply: D, = E, — §, ~ Trap(,-,-,).
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Probabilistic Duration Model

We want the distribution of durations for naive event k.

First, consider the simplest case where there is zero probability of combining with neighboring
events.

S, ~ Unif(,) and E, ~ Unif(,")
Here the durations are simply: D, = E, — §, ~ Trap(,-,-,).

Next, consider the situation with n preceding events and m subsequent events:

n m
Sk i Z \. k,iSi and Ek ~ Z \. kv]E]
i=1 =1

Again the durations are: D, = £, — §;, ~ 7
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Case study:

Bounding the duration of an aerial measurement

Aerial technology detects
of

Detected
emission rate

@ cMs Sensors

Production
Unit 9

Wellheads 2

o (2] (]

Wellheads 1

emission N\
Tank
85 ft '
F6m oup 0 ¢
naive duration: 1.78 hours 17.1 kg
mean of possible durations: 10.2 hours = 97.9 kg
max of possible durations: 18.8 hours 180.5 kg
time since previous aerial survey: 3 months — 21,024 kg

Potential duration estimates

Total emitted
methane
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Total emissions [metric tons]

Throw back to the multi-source evaluation

a Site-level and source-level
emission inventories
Upper bound: 12.6
r\ —
e Truth (line)
© — B Estimate (box)
o B Site Total
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Percent error in quantification totals
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b Site-level quantification errors C Average number of correct
Average error = 0.05 kg/hr localization estimates = 4.06
_ | | ©
- l l Example: 3%
I l we correctly
< — g l l — ~ 7| classify 2 out of 5
ol | = sources as either
=y ' & emitting or not
@ §' ' 3 7 emitting for 7% of
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ol — : : :C,) ~ windows 21.7%
| | =
I l o
T l l
l l
o . _,— - —
| | | | ' | |
-6 -4 -2 0 2 4 6 0 1 2 3 4 9
Estimated rate - true rate [kg/hr] Number of correct localization

estimates per inversion window
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Total emissions [metric tons]

0.2

Throw back to the multi-source evaluation - information filtered
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Chapter 5:
Robust duration estimates

Concluding thoughts:

* EPA interested in this methodology.
* Note sure if the WEC will survive, but Europe might implement something similar.

William Daniels, Meng Jia, Dorit Hammerling.
Environmental Science and Technology Letters, 11(11), 1187-1192, (2024).
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Thank you!

Questions?
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Energy Emissions Modeling and Data Lab




