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Global concentrations are increasing

GWP of

28x CO2 over a 
100 year period

GWP of

84x CO2 over a 
20 year period

Relatively short lifetime 

CH4 lifetime = 9 years

CO2 lifetime = 300-1000 years

Effect of CH4 emission 
reductions will be felt 
within our lifetimes!



Why do we care about methane?
H. R. 5376 (Inflation Reduction Act)

SEC. 136. (a) The Administrator shall 
impose and collect a fee from the 
owner or operator of each applicable 
facility that is required to report 
methane emissions …

SEC. 136. (g)(2) … calculation of fees 
under subsection (c) of this section, 
are based on empirical data and 
accurately reflect the total methane 
emissions from the applicable 
facilities.

United States

Methane is a potent greenhouse gas

Global concentrations are increasing
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European 
Union

Amendments adopted by the European 
Parliament on 9 May 2023 on the 
proposal for a regulation of the 
European Parliament

… importers must provide a report 
with the following information for 
each site from which the import to the 
Union has taken place …

… information specifying the 
exporter’s, or where relevant, the 
producer’s direct measurements of 
site-level methane emissions, 
conducted by independent service 
provider …

Methane is a potent greenhouse gas
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Why do we care about methane?

Methane is a potent greenhouse gas
H. R. 5376 (Inflation Reduction Act)

SEC. 136. (a) The Administrator shall 
impose and collect a fee from the 
owner or operator of each applicable 
facility that is required to report 
methane emissions …

SEC. 136. (g)(2) … calculation of fees 
under subsection (c) of this section, 
are based on empirical data and 
accurately reflect the total methane 
emissions from the applicable 
facilities.

United States

European 
Union

Amendments adopted by the European 
Parliament on 9 May 2023 on the 
proposal for a regulation of the 
European Parliament

… importers must provide a report 
with the following information for 
each site from which the import to the 
Union has taken place …

… information specifying the 
exporter’s, or where relevant, the 
producer’s direct measurements of 
site-level methane emissions, 
conducted by independent service 
provider …Global Initiatives

The Oil & Gas Methane Partnership 2.0 
(OGMP 2.0)

Level 5 – Emissions reported similarly 
to Level 4, but with the addition of 
site-level measurements (measurements 
that characterize site-level emissions 
distribution for a statistically 
representative population)
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Aerial measurement technology

Bottom-up inventory estimate = 


1 wellhead    x   wellhead emission factor   + 

1 separator   x   separator emission factor  + 

1 tank           x   tank emission factor            



Example production oil and gas site
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Event detection:

When is an emission happening?


Localization:

Where is the emission coming from?


Quantification:

How much is being emitted?
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d = F(e)

d = concentration data

e = F-1(d)



STEP 1:

Background removal 
and event detection

STEP 2:

Simulation

STEP 3:

Localization

STEP 4:

Quantification

Open source framework for solving inverse problem
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direction
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Open source framework for solving inverse problem

STEP 1:

Background removal 
and event detection

STEP 2:

Simulation

STEP 3:

Localization

STEP 4:

Quantification
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cp(x, y, z, t, Q) =
Q

(2π)3/2σ2
y σz

exp (−
(x − ut)2 + y2

2σ2
y ) [exp (−

(z − H)2

2σ2
z ) + exp (−

(z + H)2

2σ2
z )]

Gaussian puff atmospheric dispersion model

Concentration 
contribution of 

puff p

Total volume 
of methane 
contained in 

puff p

Decay in puff 
concentration 
in horizontal 
plane (x, y)

Decay in puff 
concentration 

in vertical 
dimension (z)
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Gaussian puff atmospheric dispersion model
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∑
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Repeat this for all other potential sources!
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Open source framework for solving inverse problem

STEP 1:

Background removal 
and event detection

STEP 2:

Simulation

STEP 3:

Localization

STEP 4:

Quantification
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Open source framework for solving inverse problem

STEP 1:

Background removal 
and event detection

STEP 2:

Simulation

STEP 3:

Localization

STEP 4:

Quantification
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cp(x, y, z, t, Q) = Q
1

(2π)3/2σ2
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Simulation is a linear function of emission rate 

Volume of methane contained in puff p
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Total concentration 
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Concentration 
contribution of puff p

Q̂ = argmin
Q { 1

n

n

∑
t=1

(d(x, y, z, t) − c(x, y, z, t, Q))2}
Emission rate 
estimate

Concentration 
data

Simulated 
concentrations



Mean squared 
error between 
observations 

and scaled 
predictions

Low 
error

High 
error
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Open source framework for solving inverse problem

STEP 1:

Background removal 
and event detection

STEP 2:

Simulation

STEP 3:

Localization

STEP 4:

Quantification
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85 single-source controlled releases

Emission rates range from 
0.2 to 6.4 kg/hr

Emission durations range from 
0.5 to 8.25 hours

Evaluation on single-source controlled releases
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Methane Emissions Technology Evaluation Center (METEC)



Event-level false positive rate: 5.5%

Evaluation on single-source controlled releases
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Correctly detected 
emission

Correctly localized 
emission



Evaluation on single-source controlled releases
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Chapter 1: 

Single-source emission detection, localization, and quantification

Concluding thoughts:

• Framework is already being used by some CMS technology vendors.


Detection, localization, and quantification of single-source methane emissions on oil and gas production sites 
using point-in-space continuous monitoring systems.

William Daniels, Meng Jia, Dorit Hammerling. 

Elementa: Science of the Anthropocene, 12 (1), 00110, (2024).

Filling a critical need: a lightweight and fast Gaussian puff model implementation.

Meng Jia, Ryker Fish, William Daniels, Brennan Sprinkle, Dorit Hammerling.

Scientific Reports, in revision, (2024).
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Chapter 2:

Reconciling aerial measurements and bottom-up inventories
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CMS sensor

Bottom-up top-down reconciliation case study
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CMS sensor
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CMS sensor

CMS sensor

13 snapshot 
measurements 

over 4 days
average = 12.5 kg/hr

Snapshot average
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CMS sensor
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CMS sensor

13 snapshot 
measurements 

over 4 days
average = 12.5 kg/hr

Snapshot average

Bottom-up inventory 
during snapshot 

measurements
0.8 kg/hr
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Average snapshot measurement
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February 23rd
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Site total
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Snapshot average

Equipment change on 
February 23rd

CMS can explain the 
gap between bottom-up 
inventory and top-down 

aerial measurements



Concluding thoughts:

• Multi-scale measurements are complementary.

• Measurements at high temporal resolution are valuable, especially for site-level analysis.

Towards multiscale measurement-informed methane inventories: reconciling bottom-up site-level inventories with 
top-down measurements using continuous monitoring systems.

William Daniels, Jiayang (Lyra) Wang, Arvind Ravikumar, Matthew Harrison, Selina Roman-White, Fiji George, Dorit Hammerling.

Environmental Science and Technology, 57(32), 11823-11833, (2023).

Multi-scale methane measurements at oil and gas facilities reveal necessary framework for improved emissions 
accounting.

Jiayang (Lyra) Wang, William Daniels, Dorit Hammerling, Matthew Harrison, Kaylyn Burmaster, Fiji George, Arvind Ravikumar.

Environmental Science and Technology, 56(20), 14743-14752, (2022).

Chapter 2: 

Reconciling aerial measurements and bottom-up inventories
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Chapter 3:

Intercomparison of CMS solutions
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Finding #1: Raw concentration data different between co-located sensors
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Finding #2: Quantification estimates vary dramatically at the 30-minute scale

Emission rate estimates 
from the CMS vendors

B
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Finding #2: Quantification estimates vary dramatically at the 30-minute scale

Emission rate estimates 
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Emission rate estimates 
from the DLQ algorithm
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Finding #3: Quantification estimates begin to align at the month-scale

Emission rate estimates 
from the CMS vendors
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Finding #3: Quantification estimates begin to align at the month-scale

Emission rate estimates 
from the CMS vendors

Emission rate estimates 
from the DLQ algorithm
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Finding #4: Similar sites do not necessarily have similar emissions



Concluding thoughts:

• Important to assess CMA performance in the field in addition to controlled releases.

• Current CMS solutions may be more useful when data is aggregated at hourly or monthly 

scales.

Intercomparison of three continuous monitoring systems on operating oil and gas sites.

William Daniels*, Spencer Kidd*, Lydia (Shuting) Yang, Shannon Stokes, Arvind Ravikumar, Dorit Hammerling.

ACS ES&T Air, in press, (2024).

Chapter 3: 

Intercomparison of CMS solutions
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Chapter 4:

Multi-source emission detection, localization, and quantification
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Model hierarchy
Assume a multiple linear regression model at the data level

Concentration 
observations


from CMS sensors

Simulated concentrations 
from forward model, with 
each column assuming a 

different source

Emission rates for 
each source

n = number of observations

p = number of potential sources

70

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p



Model hierarchy
Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p

n = number of observations

p = number of potential sources

71

Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)



Model hierarchy
Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p

n = number of observations

p = number of potential sources

72

Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

Gaussian

white noise

Autocorrelation 
coefficient



Model hierarchy
Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p

n = number of observations
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

This gives us:  y ∼ N(Xβ, σ2R)



Model hierarchy
Given an AR(1) process for , the correlation matrix isϵ

n = number of observations

p = number of potential sources

74

R =

1 r r2 . . . rn−1

r 1 r . . . ⋮
r2 r 1 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 . . . . . . . . . 1



Model hierarchy
Given an AR(1) process for , the correlation matrix isϵ

75

R =

1 r r2 . . . rn−1

r 1 r . . . ⋮
r2 r 1 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 . . . . . . . . . 1

which has closed form expressions for the inverse and determinant:

R−1 =
1

(1 − r2)

1 −r 0 . . . 0
−r 1 + r2 −r . . . ⋮
0 −r 1 + r2 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮
0 . . . . . . . . . 1

|R | = (1 − r2)n−1and

n = number of observations

p = number of potential sources



Model hierarchy
y = Xβ + ϵ

“Slab” 
component is 
non-negative

Proportion of 
samples where 

 gives 
posterior 

probability that 
source  is 
emitting

zi = 1

i

76

Spike-and-slab 
prior allows 

samples to be 
identically zero

ai, bi, ci, di 
can 

contain 
operator 
insight

The remainder of the hierarchy takes the following form

ϵ ∼ N(0,σ2R)
Data-level:

n = number of observations

p = number of potential sources



Model hierarchy
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Sampling from the posterior
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We can derive Gibbs updates for all parameters except . ν

Iterative samples from each 
full conditional gives you 
samples from the joint 

posterior!



Model evaluation on multi-source controlled release data

79

337 controlled releases:

• 99 (29%) single-source

• 238 (71%) multi-source

Emission rates range from 
0.08 to 7.2 kg/hr

Emission durations range from 
0.5 to 8 hours

Methane Emissions Technology Evaluation Center (METEC)



Model evaluation on multi-source controlled release data
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Simulation study
Vary the degree of autocorrelation

For each controlled release, replace actual concentration 
observations with

where  are the true emission rates and are errors 
that follow an AR(1) process.

βT
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that follow an AR(1) process.
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True parameter value
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Simulation study
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Model evaluation on multi-source controlled release data
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Model evaluation on multi-source controlled release data
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Model evaluation on multi-source controlled release data
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Simulation study
Vary the degree of spike misalignment

For each controlled release, replace actual concentration 
observations with

but move a given percent of the spikes in the fake 
observations to a different time during the release.
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Simulation study
Vary the degree of spike misalignment

For each controlled release, replace actual concentration 
observations with

but move a given percent of the spikes in the fake 
observations to a different time during the release.

True parameter value
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Simulation study For each controlled release, replace actual concentration 
observations with

but move a given percent of the spikes in the fake 
observations to a different time during the release.

Vary the degree of spike misalignment



A Bayesian hierarchical model for methane emission source apportionment. 

William Daniels, Douglas Nychka, Dorit Hammerling. 

Journal of the American Statistical Association, in preparation, (2024).

To do before submission:

• Finish comparison to the other methods
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Chapter 4: 

Multi-source emission detection, localization, and quantification
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Chapter 5:

Robust duration estimates



A policy driven research project
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40 CFR Part 98:
Proposed updates to the EPA’s 
Greenhouse Gas Reporting Program 
(GHGRP) to take effect January 2025

… also proposing a 100 kg/hr CH4 
emission threshold to align with the 
super-emitter response program 
proposed in the NSPS OOOOb. These 
emissions are generally intermittent, 
with widely varying durations …

… also proposing that reporters would 
provide the start date and time of the 
release, duration of the release, and 
the method used to determine the start 
date and time …

A policy driven research project

Oil and gas operators 
required to report all methane 
emissions > 100 kg/hr

For each of these emissions, 
the operator must estimate 
an emission duration
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One problem… incomplete sensor coverage

CMS 
sensors
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One problem… incomplete sensor coverage
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However, we can estimate when this happens!

CMS 
sensors

East Separator

East Wellhead

Tank

West Separator

West Wellhead
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Downwind region does not overlap with CMS sensors = period of “no information”

Downwind region

Wind 
direction



Tank
West Wellhead
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East Wellhead
West Separator
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Downwind region

Wind 
direction

Downwind region does overlap with CMS sensors = period of “information”

However, we can estimate when this happens!
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Probabilistic Duration Model 
Step 1: Identify naive events

Naive event 1 Naive event 
2
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Probabilistic Duration Model 
Step 1: Identify naive events

Example: we want a duration estimate 
for naive event 1

Naive event 1 Naive event 
2
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Information 
No 

information 

Information Information 
No 

information 

Probabilistic Duration Model 
Step 2: Identify periods of information

Naive event 1 Naive event 
2
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Information 
No 

information 

Information Information 
No 

information Naive event 1 Naive event 
2

Probabilistic Duration Model 
Step 3: Compute probability of combining events

q1 = 10 kg/hr (tank)
q2 = 12 

kg/hr (tank)

ℙi,j = 1 −
|qi − qj |

P95(q) − P5(q)

ℙ1,2 = 0.85
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Information 
No 

information 

Information Information 
No 

information Naive event 1 Naive event 
2

Probabilistic Duration Model 
Step 4: Sample start and end times 

Only possible 
start time for 
naive event 1

Range of 
possible


end times for 
naive event 1

Range of 
possible


end times for 
naive event 2

ℙi,j = 1 −
|qi − qj |

P95(q) − P5(q)

ℙ1,2 = 0.85

q1 = 10 kg/hr (tank)
q2 = 12 

kg/hr (tank)



108

Probabilistic Duration Model 
Step 5: Compute distribution of durations

Naive duration 
(3.1 hours)

Mean of possible 
durations


(6.8 hours)

Max of possible 
durations

(8.2 hours)
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Probabilistic Duration Model 
Mixture model of uniform distributions

We want the distribution of durations for naive event .k
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Probabilistic Duration Model 
Mixture model of uniform distributions

We want the distribution of durations for naive event .


First, consider the simplest case where there is zero probability of combining with neighboring 
events.


   and   


Here the durations are simply: .


k

Sk ∼ Unif(⋅,⋅) Ek ∼ Unif(⋅,⋅)

Dk = Ek − Sk ∼ Trap(⋅,⋅,⋅,⋅)
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Probabilistic Duration Model 
Mixture model of uniform distributions

We want the distribution of durations for naive event .


First, consider the simplest case where there is zero probability of combining with neighboring 
events.


   and   


Here the durations are simply: .


Next, consider the situation with  preceding events and  subsequent events:


   and   


Again the durations are: 

k

Sk ∼ Unif(⋅,⋅) Ek ∼ Unif(⋅,⋅)

Dk = Ek − Sk ∼ Trap(⋅,⋅,⋅,⋅)

n m

Sk ∼
n

∑
i=1

ℙk,iSi Ek ∼
m

∑
j=1

ℙk,jEj

Dk = Ek − Sk ∼ ?
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Case study:

Bounding the duration of an aerial measurement

9.6 kg/hr x =
17.1 kg


97.9 kg


180.5 kg

naive duration: 1.78 hours


mean of possible durations: 10.2 hours


max of possible durations: 18.8 hours

Detected 
emission rate Potential duration estimates Total emitted 

methane

9.6 kg/hr x = 21,024 kgtime since previous aerial survey: 3 months

Aerial technology detects separator emission

of 9.6 kg/hr



Throw back to the multi-source evaluation
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Throw back to the multi-source evaluation - information filtered



Concluding thoughts:

• EPA interested in this methodology.

• Note sure if the WEC will survive, but Europe might implement something similar.

Estimating methane emission durations using continuous monitoring systems.

William Daniels, Meng Jia, Dorit Hammerling.

Environmental Science and Technology Letters, 11(11), 1187-1192, (2024).

Chapter 5: 

Robust duration estimates
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Thank you! 
Questions?


