Developing fully transparent, site-level, measurement-based inventories using continuous monitoring data

William Daniels and the Colorado School of Mines Team

Department of Applied Mathematics and Statistics

Developing fully transparent, site-level, measurement-based inventories using continuous monitoring data

Developing fully transparent, site-level, measurement-based inventories using continuous monitoring data

Inventory = sum (equivalent to mean) of emissions over a given time period

Developing fully transparent, site-level, measurement-based inventories using continuous monitoring data

Inventory = sum (equivalent to mean) of emissions over a given time period Measurement-based = only use measurement data to build the inventory

Developing fully transparent, site-level, measurement-based inventories using continuous monitoring data

Inventory = sum (equivalent to mean) of emissions over a given time period

Measurement-based = only use measurement data to build the inventory

Site-level = only measurements from the specific site used to build the inventory

Developing fully transparent, site-level, measurement-based inventories using continuous monitoring data

Inventory = sum (equivalent to mean) of emissions over a given time period

Measurement-based = only use measurement data to build the inventory

Site-level = only measurements from the specific site used to build the inventory

Fully transparent = all of the methods are open source!

site-level & measurement-based

Site-level = only measurements from the specific site used to build the inventory

Measurement-based = only use measurement data to build the inventory

site-level & measurement-based

Site-level = only measurements from the specific site used to build the inventory

Measurement-based = only use measurement data to build the inventory

Advantages

- No assumptions about similar sites following similar distributions
- No potentially for underestimation to leak through from the inventory

site-level & measurement-based

Site-level = only measurements from the specific site used to build the inventory

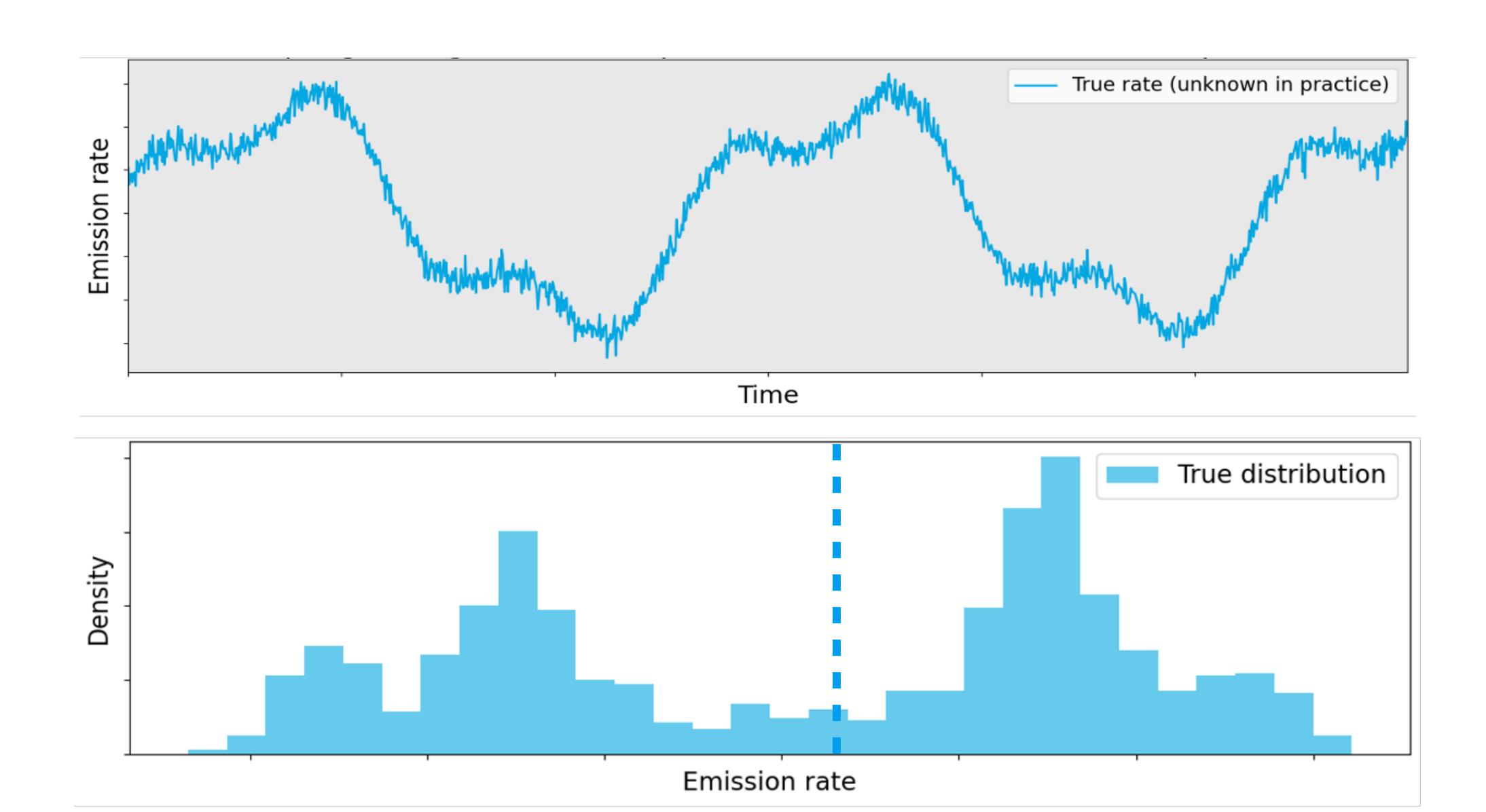
Measurement-based = only use measurement data to build the inventory

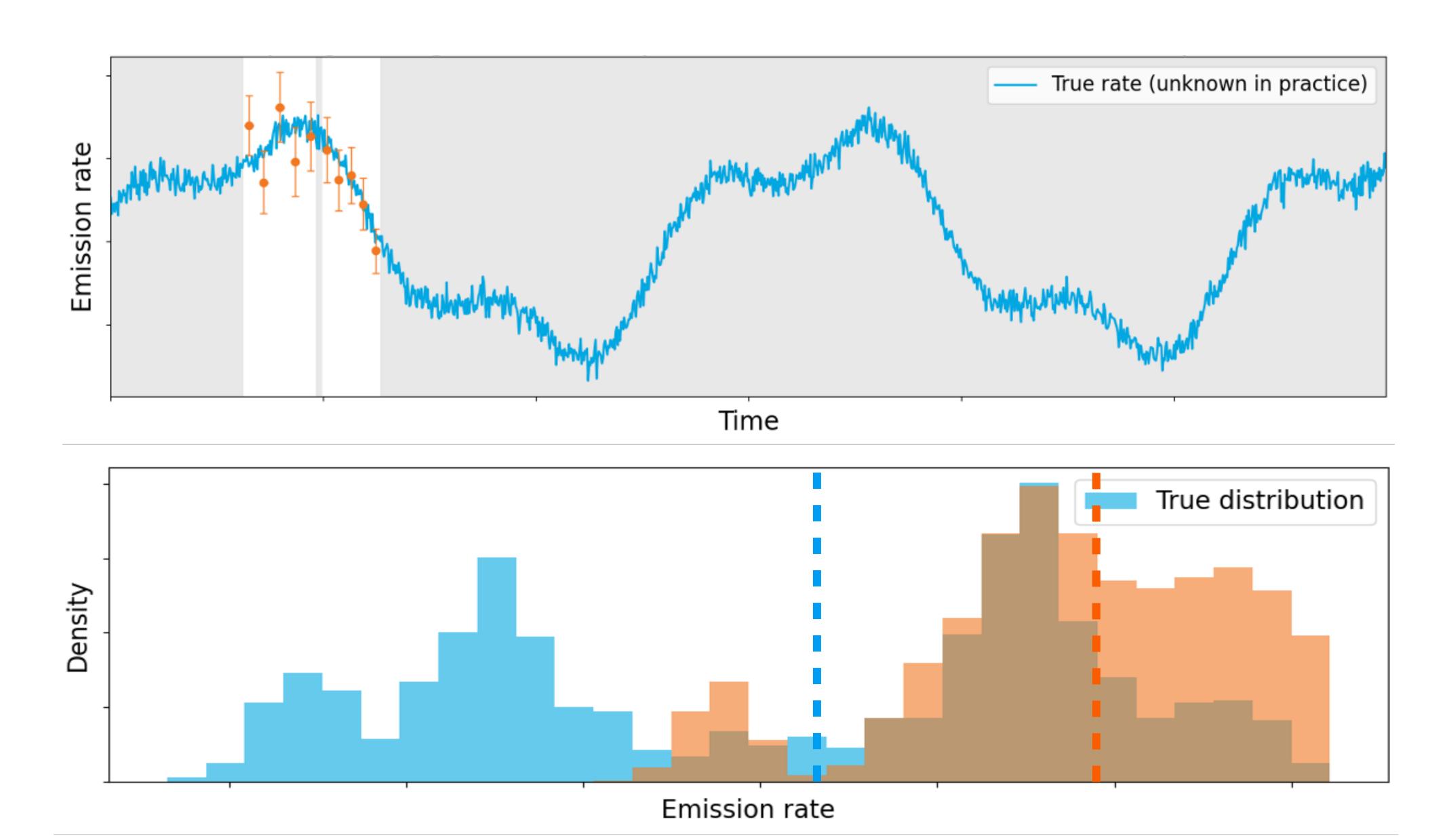
Advantages

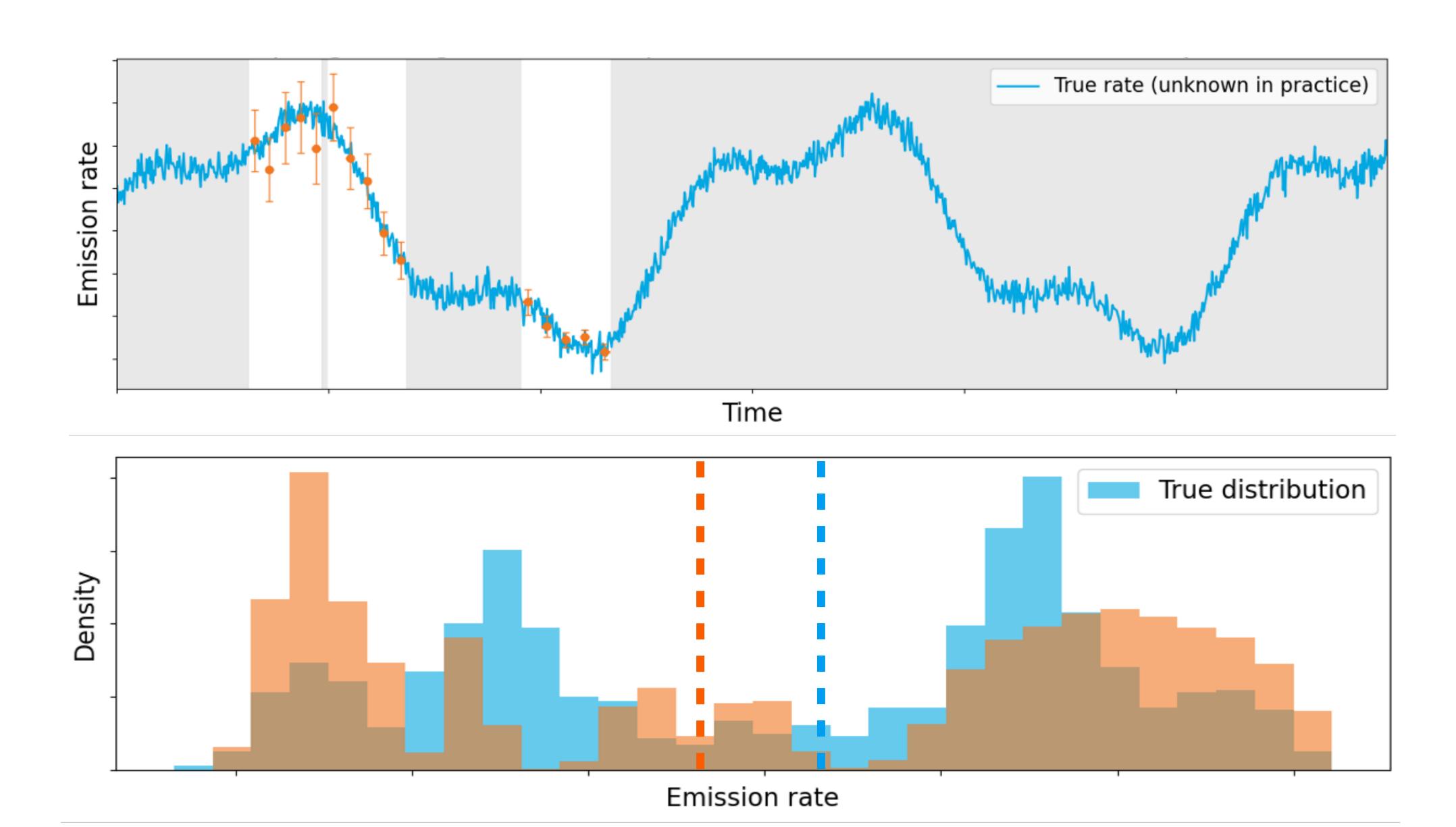
- No assumptions about similar sites following similar distributions
- No potentially for underestimation to leak through from the inventory

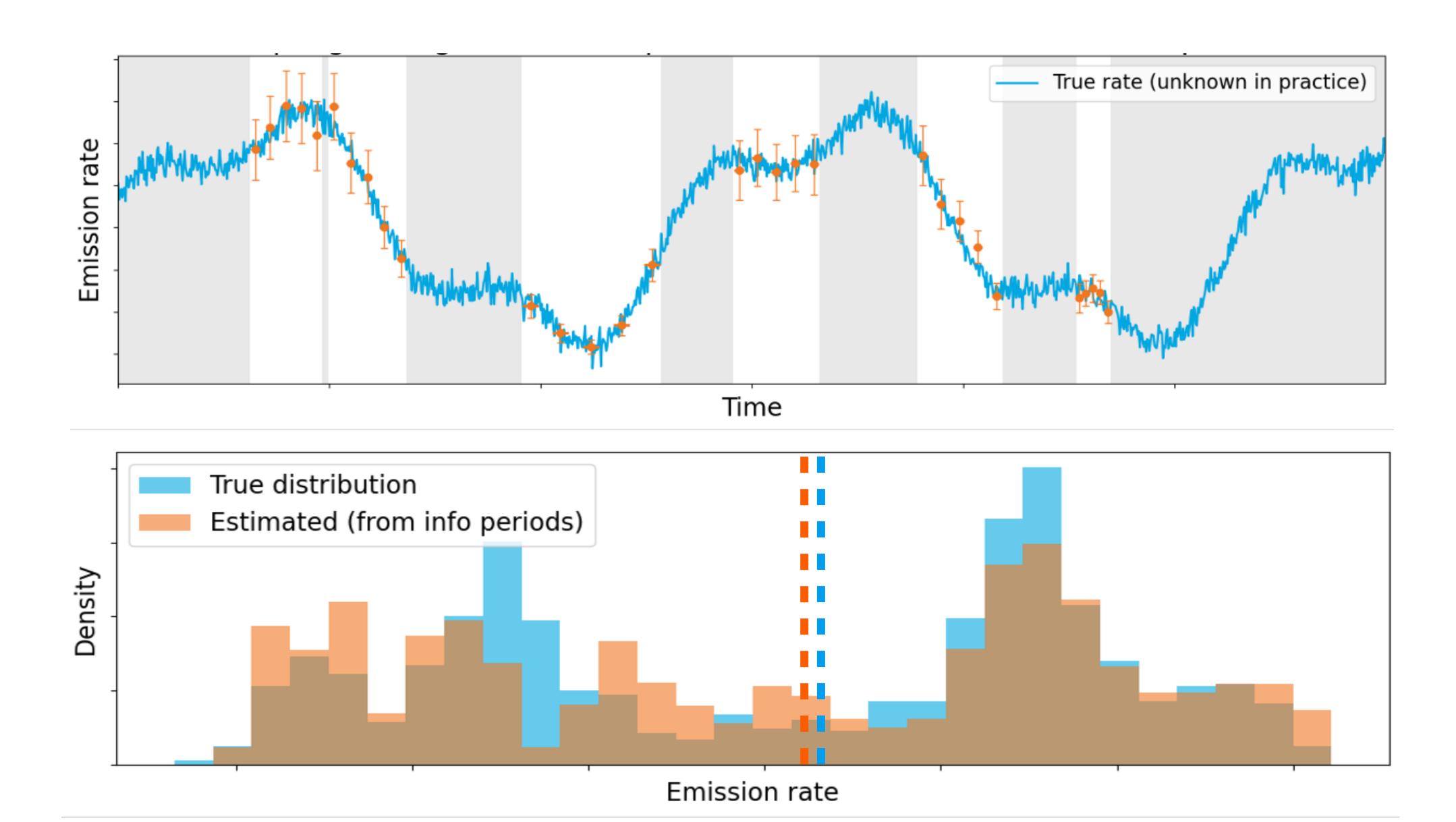
Challenges

- Source estimate does not necessarily equal root cause
- Need a lot of measurements on each site
- Scaling up requires lots of measurements on lots of sites

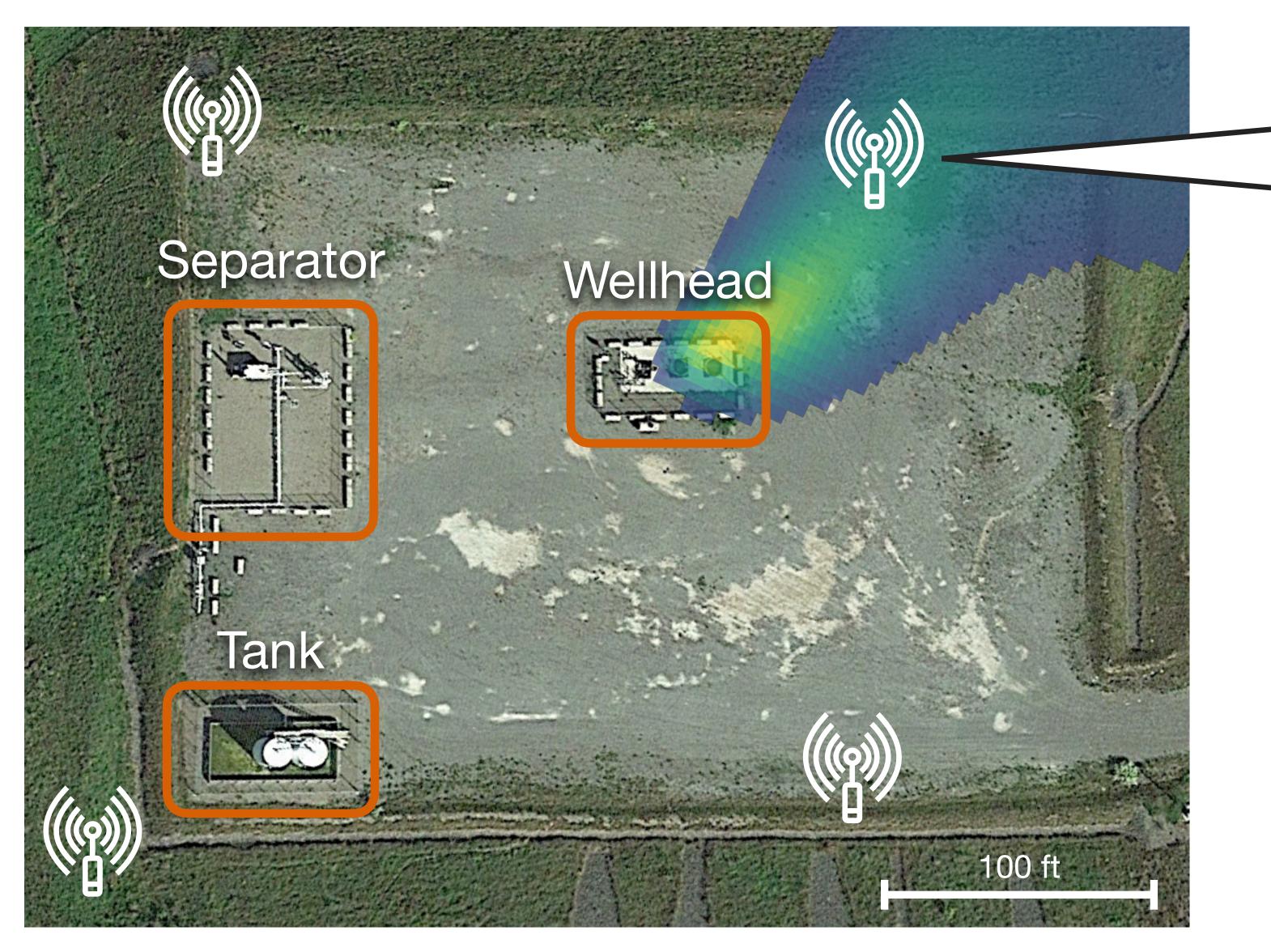


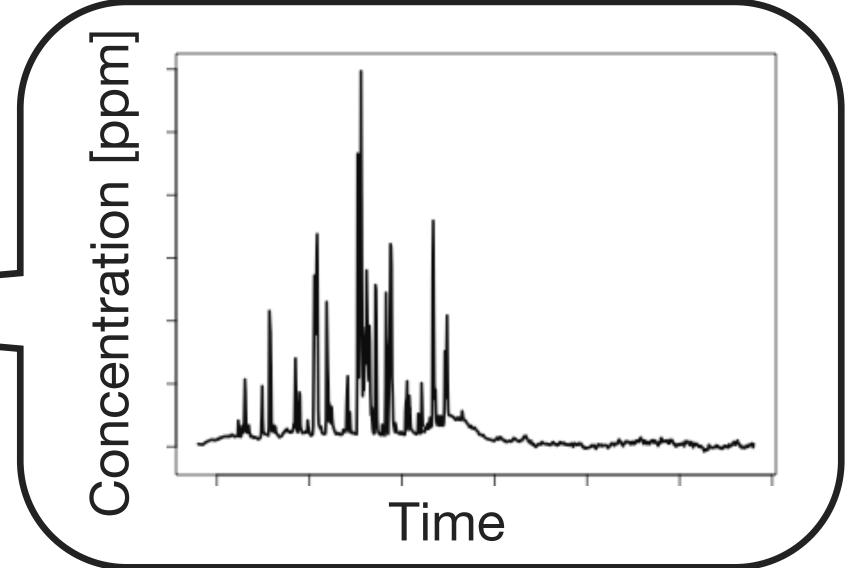




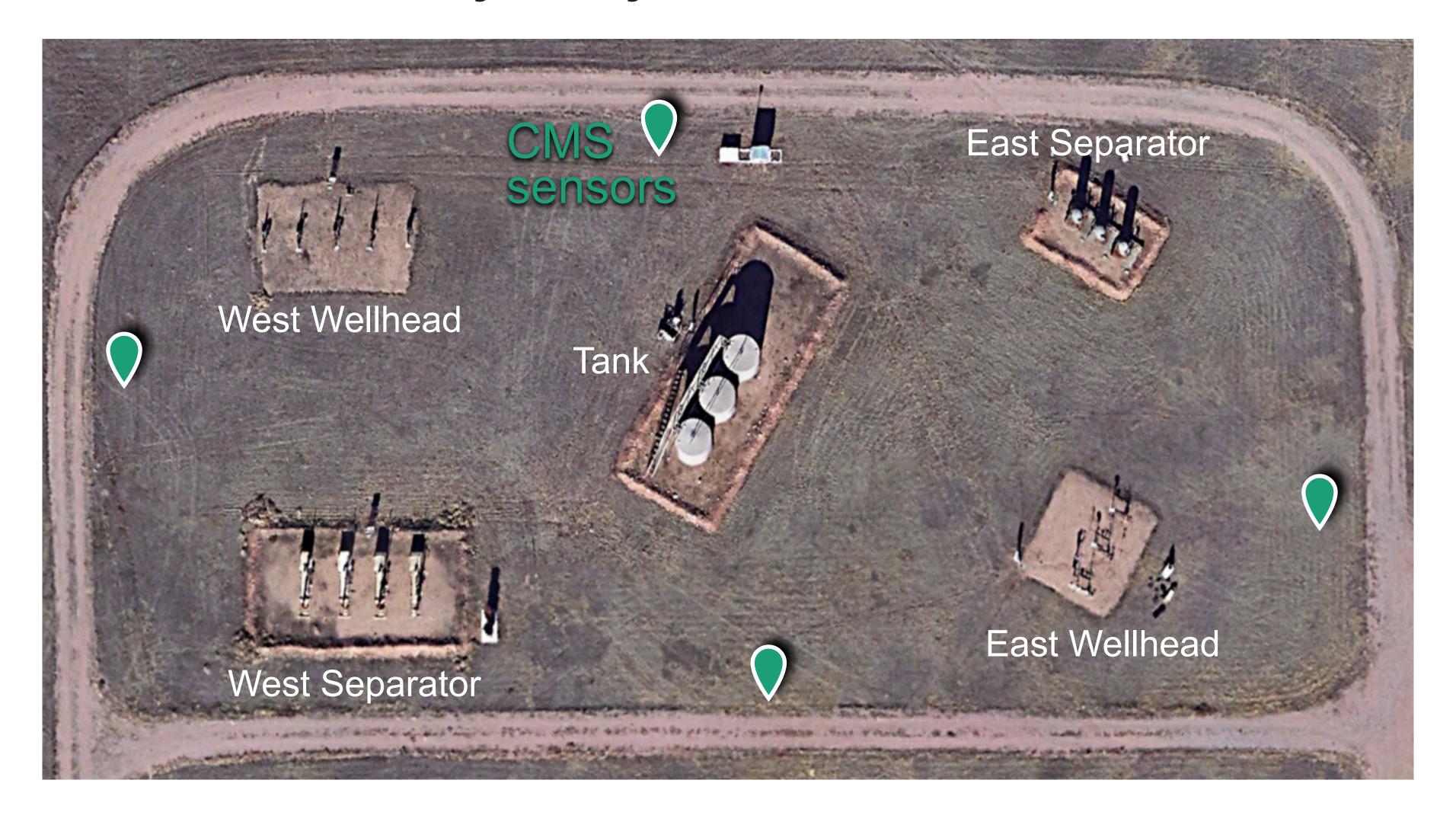


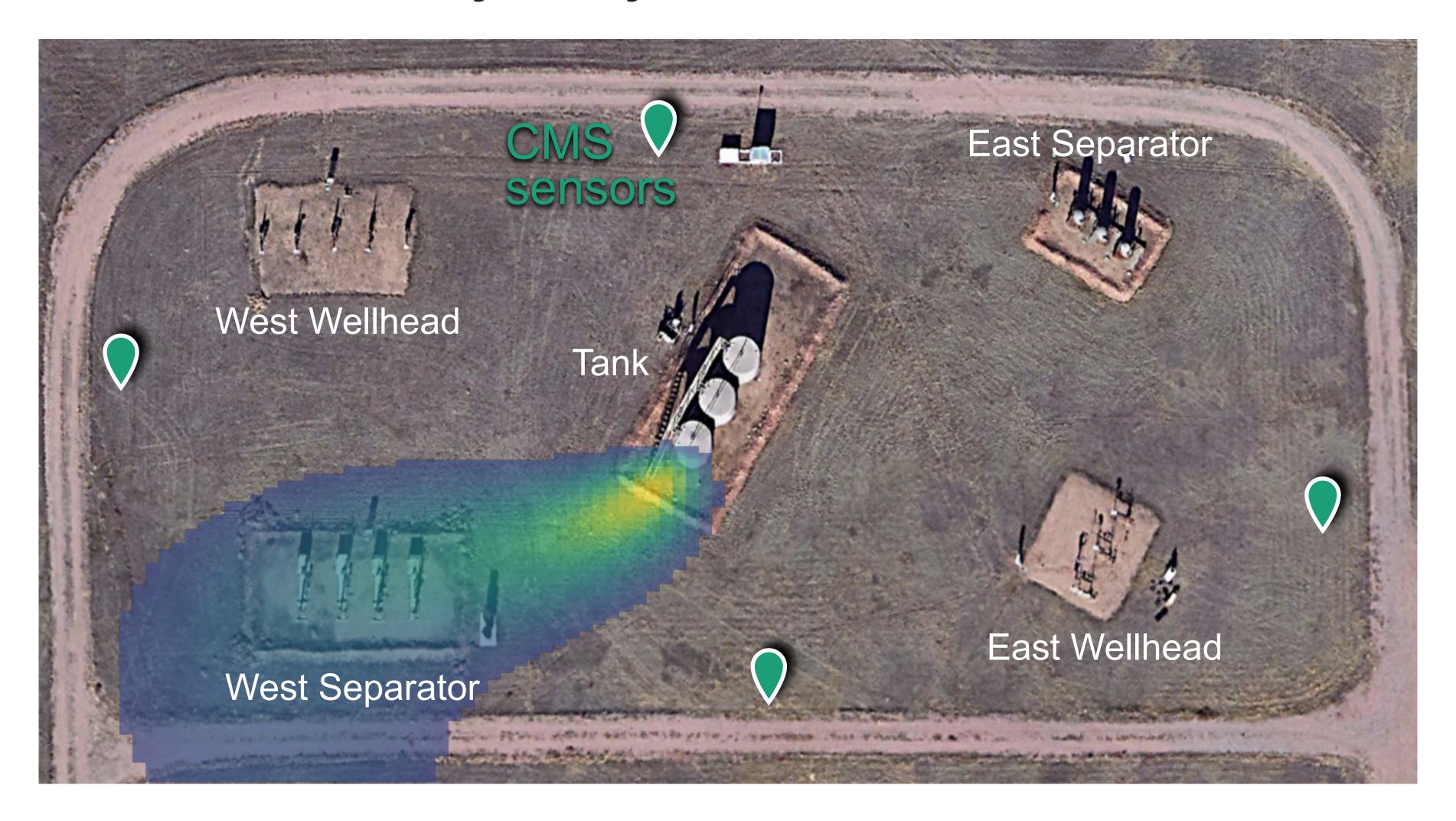
Continuous monitoring 101



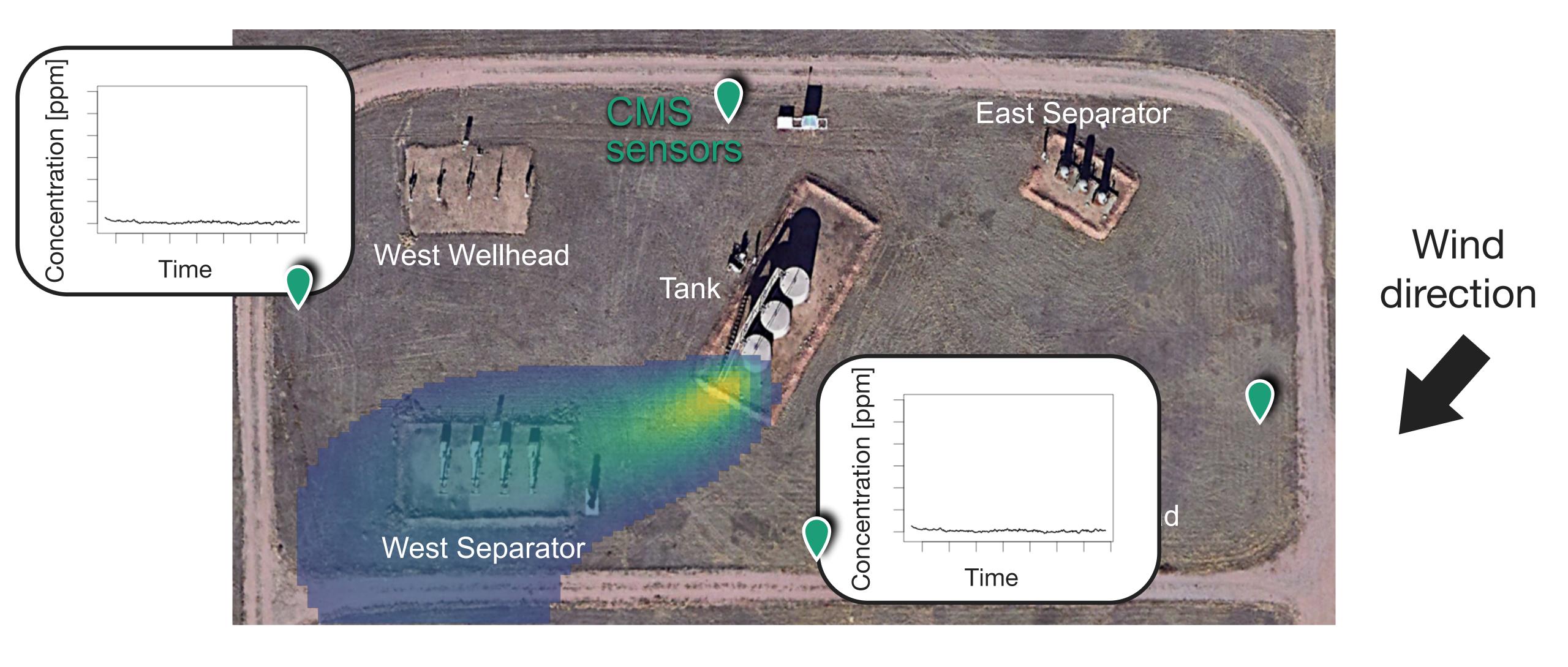


Aerial measurement technology

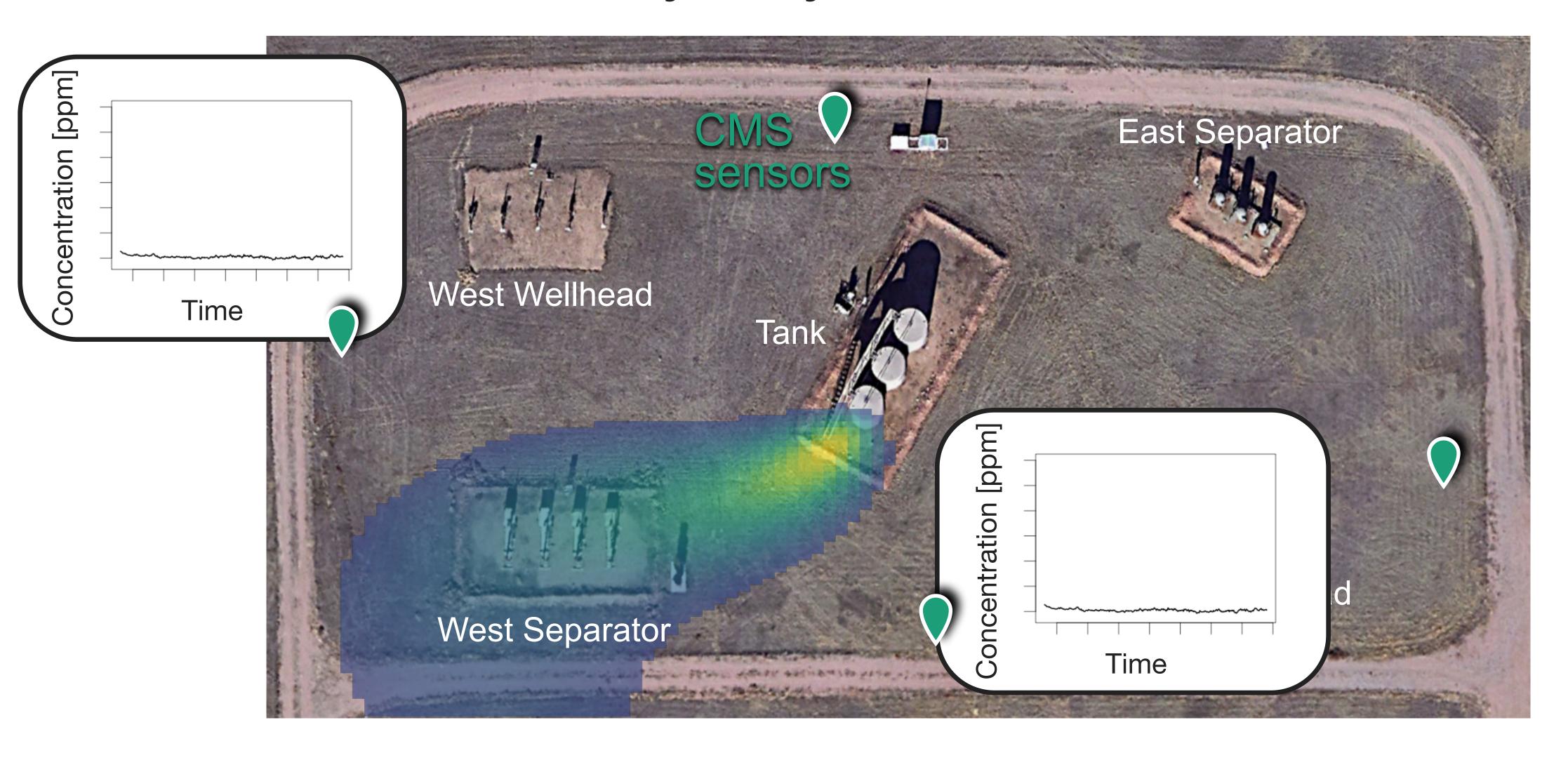




Wind direction



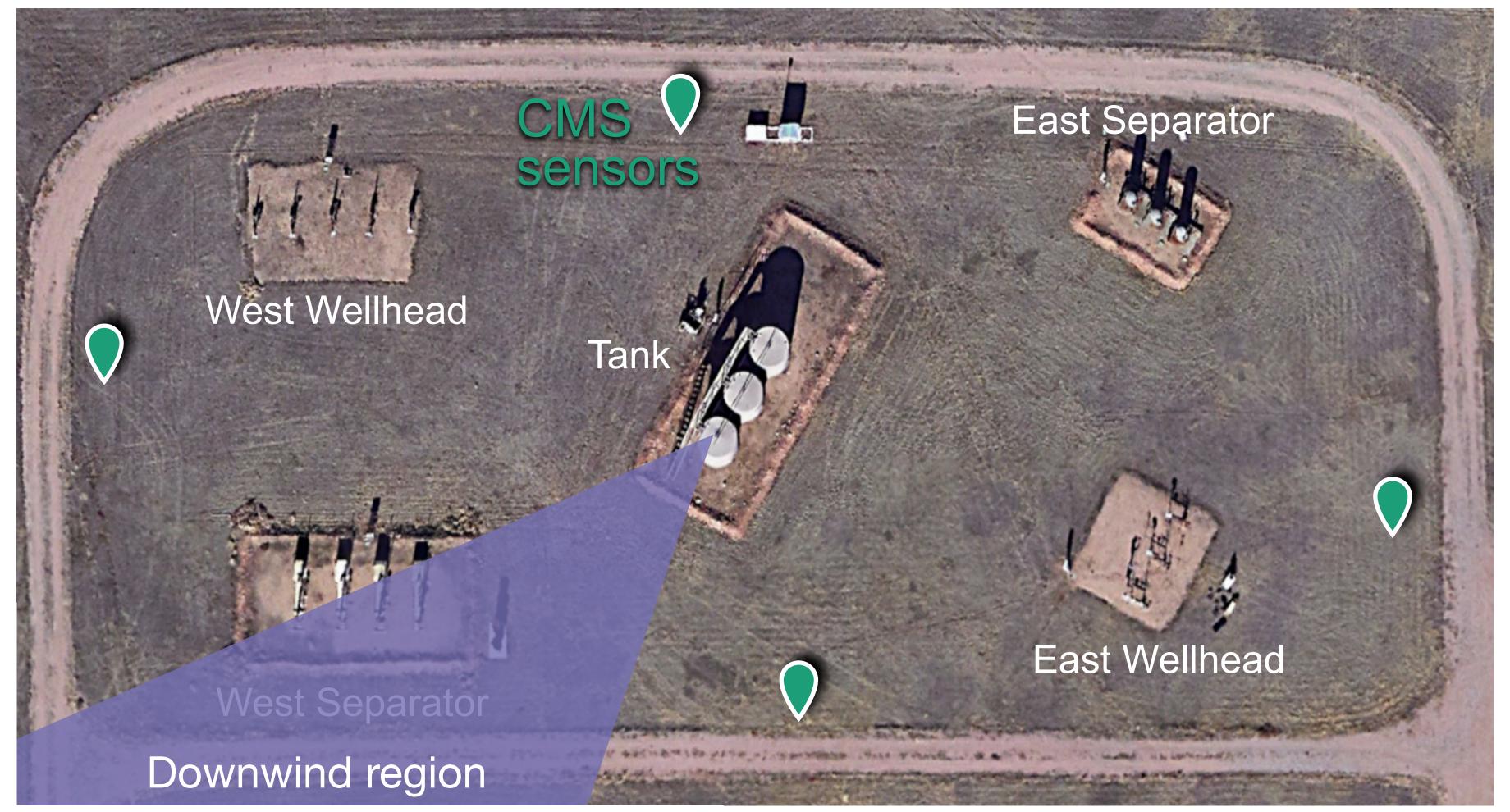
No emissions information when the wind blows between sensors



Wind direction

This cannot be interpreted as 0 kg/hr!

However... we can estimate when this happens!

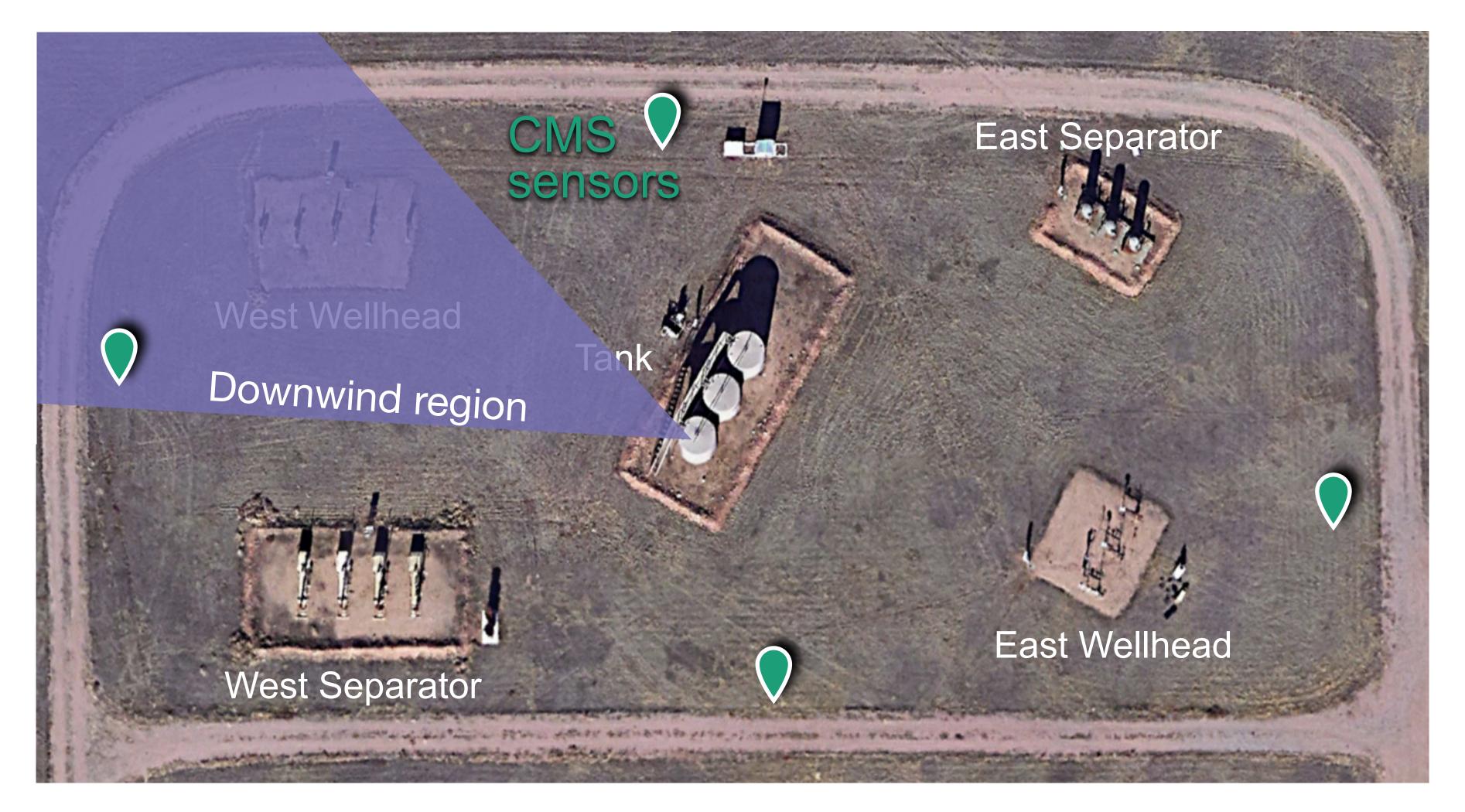


Downwind region **does not** overlap with CMS sensors = period of "no information"

Wind

direction

However... we can estimate when this happens!

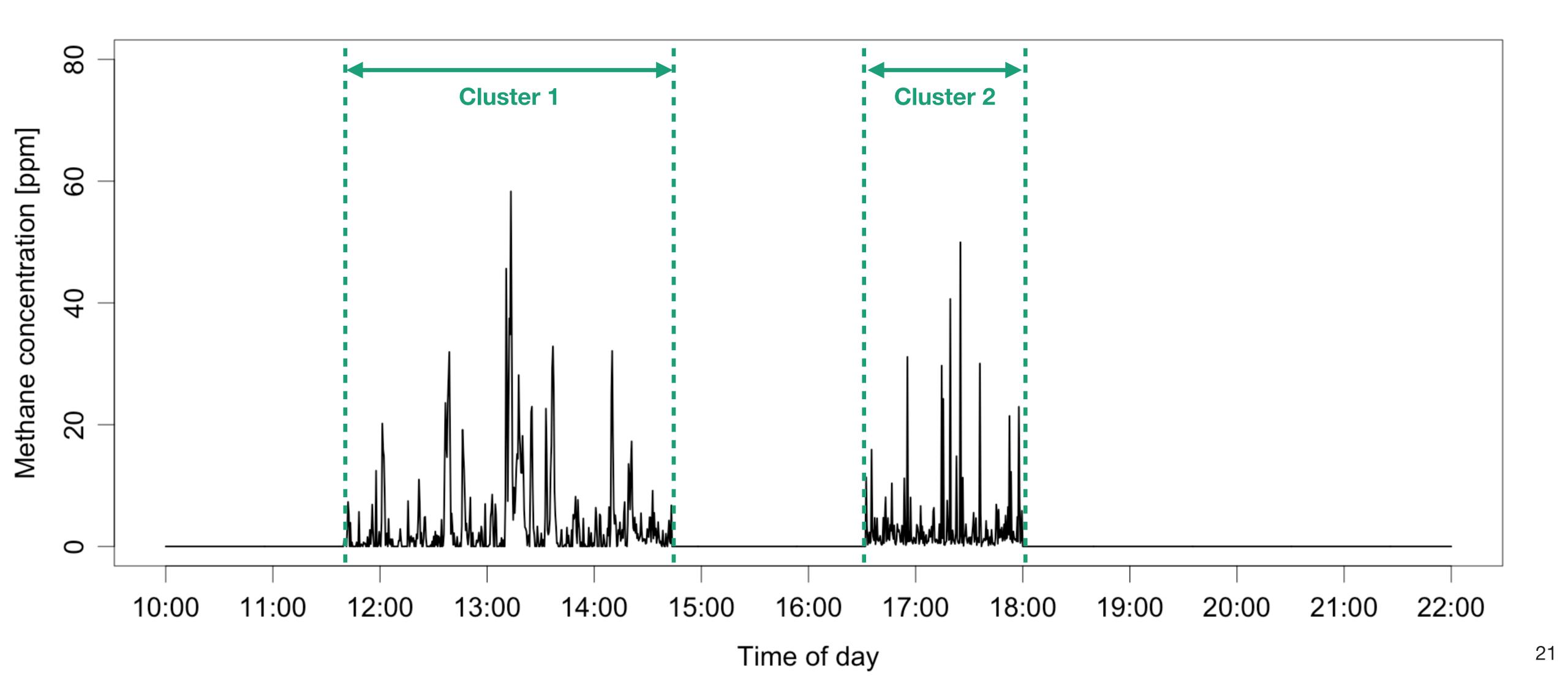


Downwind region **does** overlap with CMS sensors = period of "information"

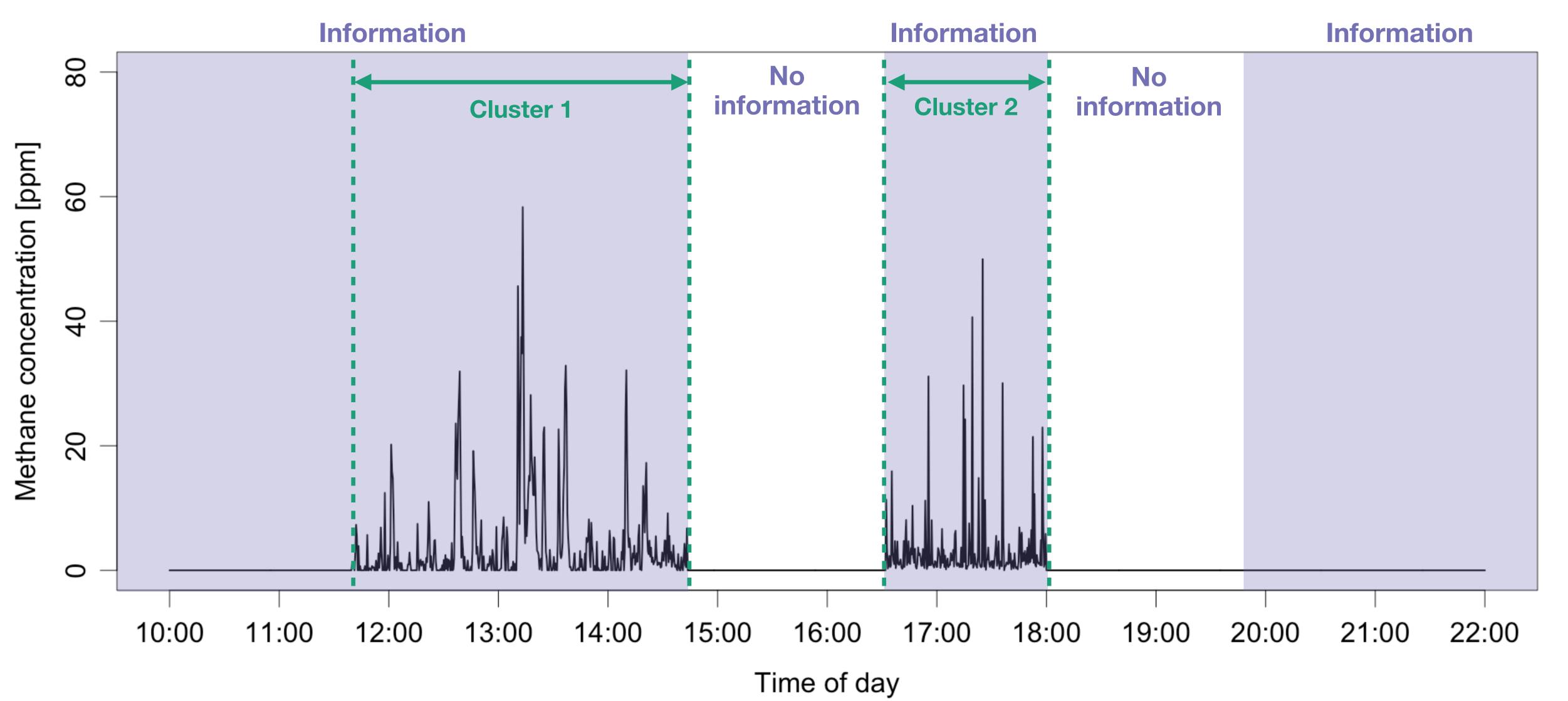
Wind

direction

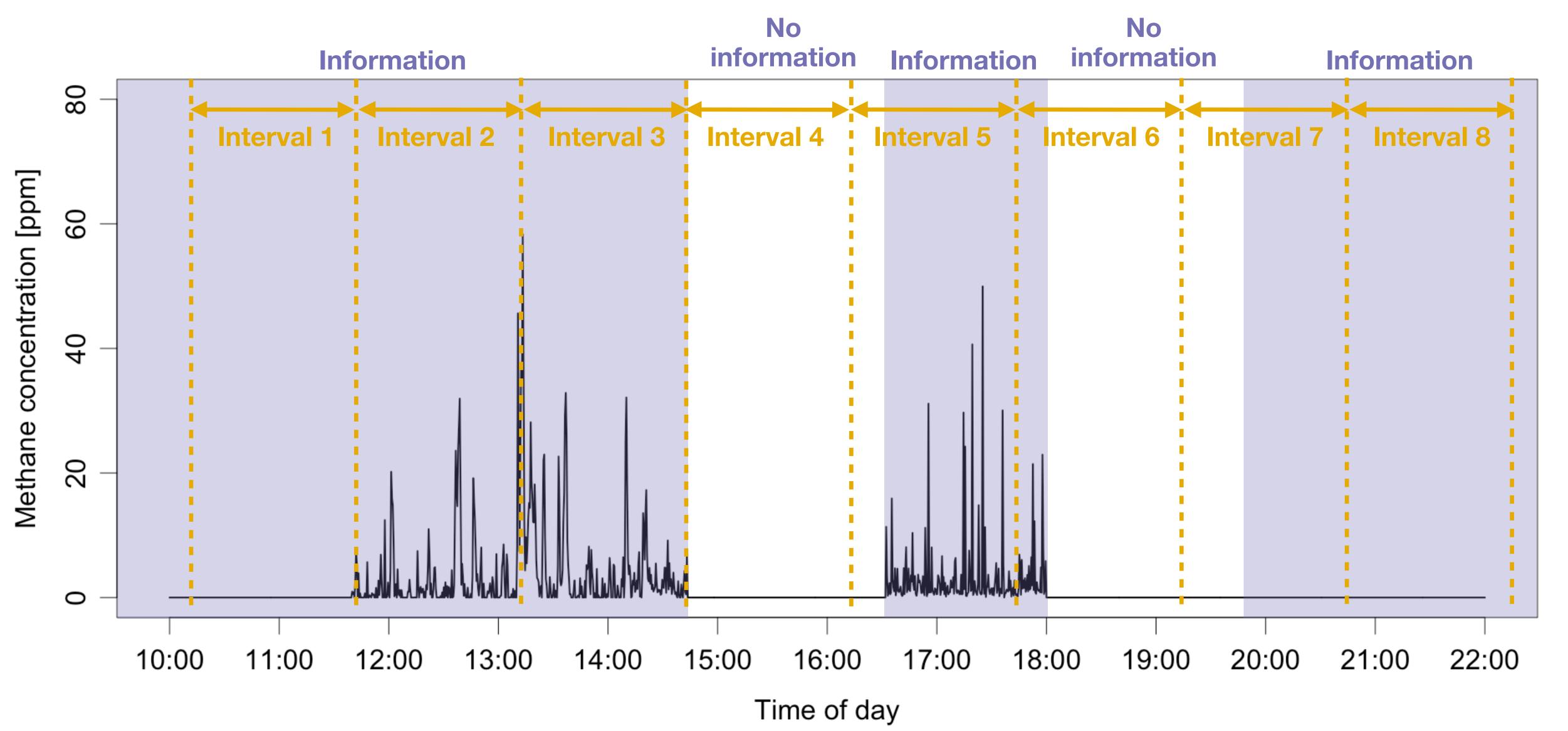
How do periods of information and no information present themselves in the data?



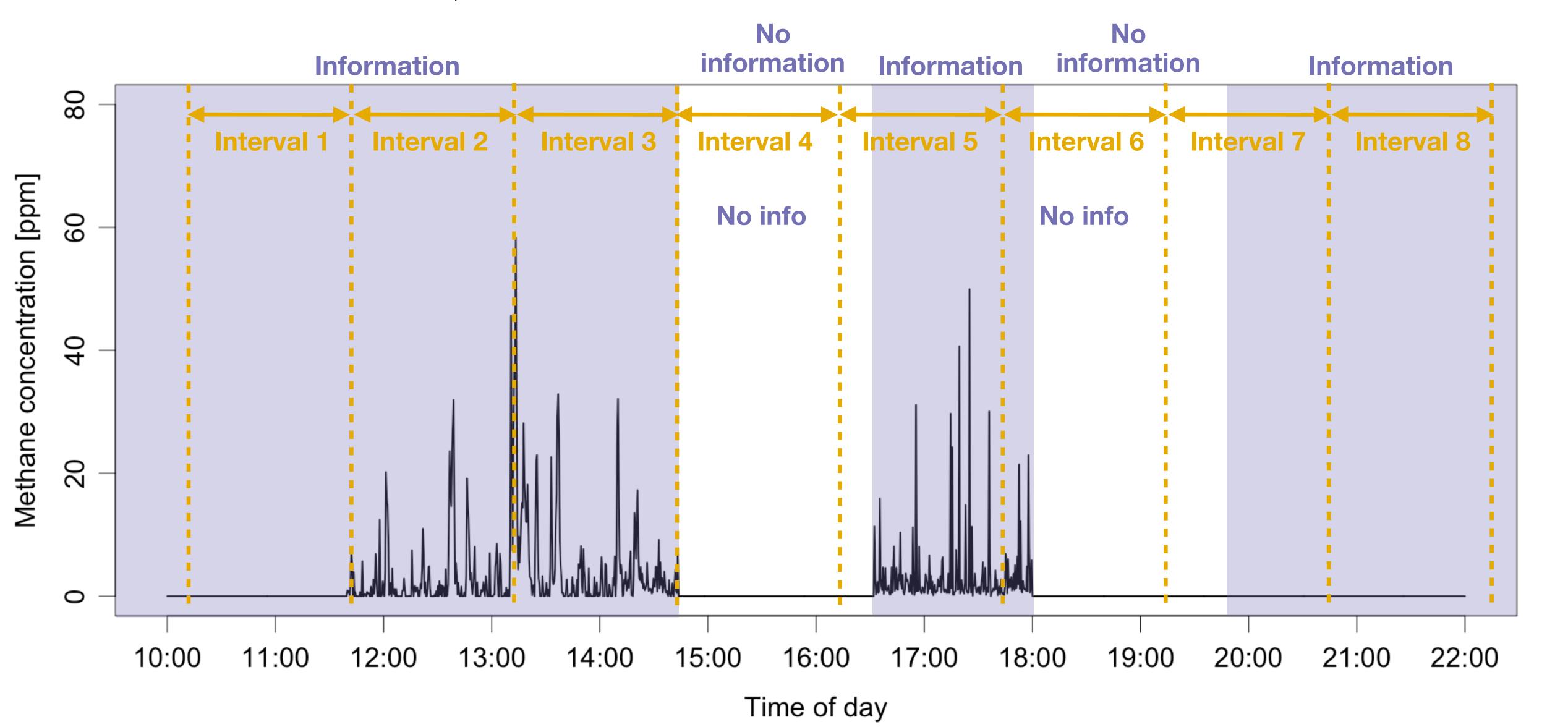
How do periods of information and no information present themselves in the data?



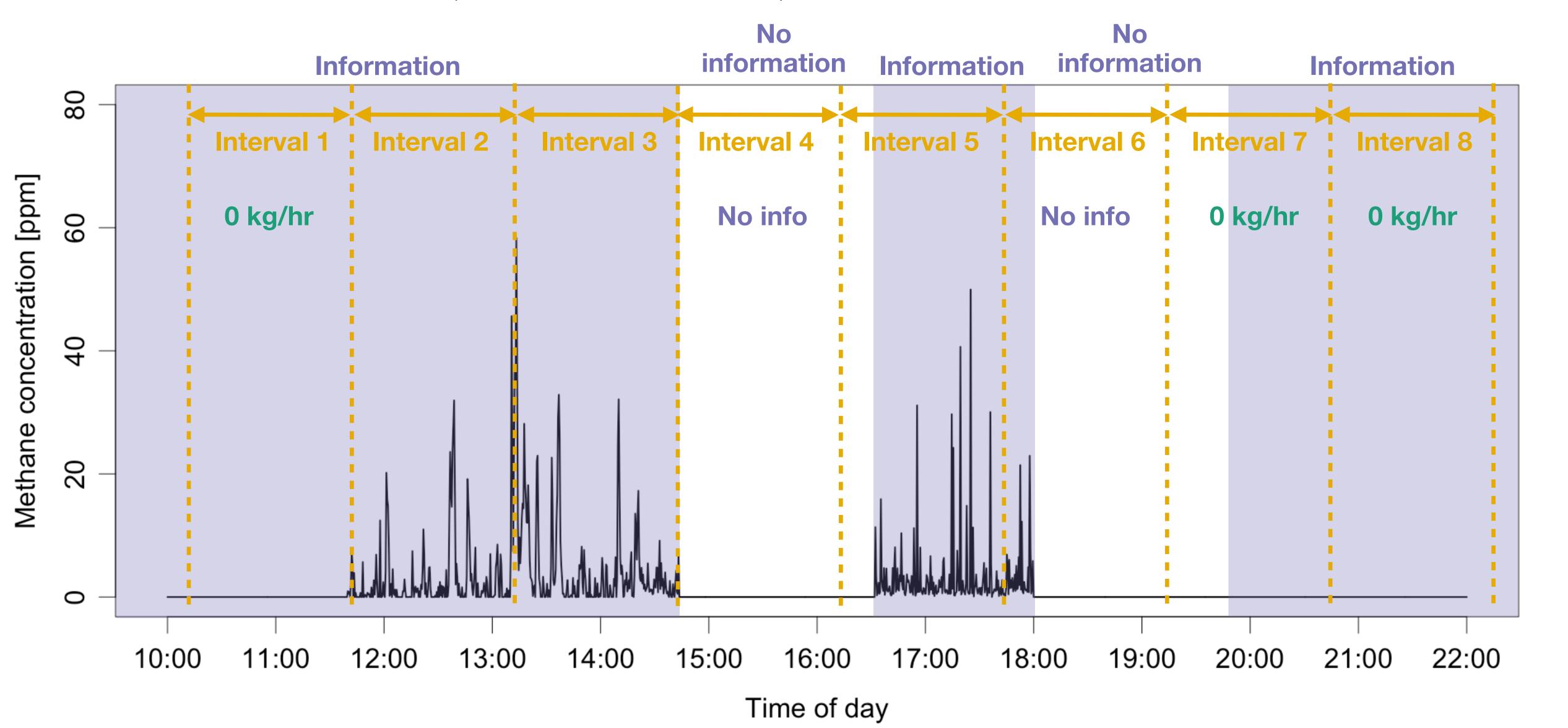
In practice, we estimate emissions on fixed fixed intervals



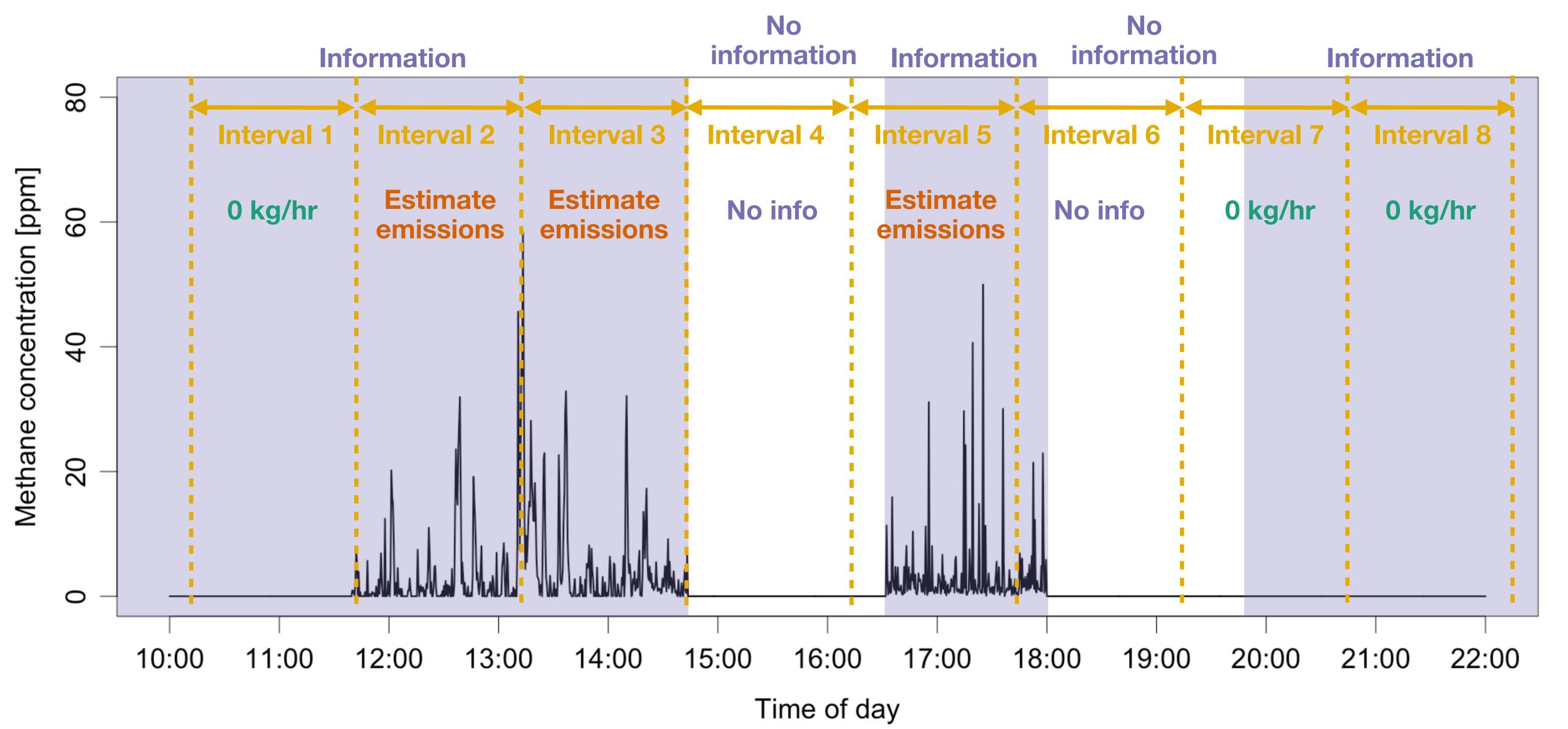
Before building an inventory, we need to identify when an interval has no information,



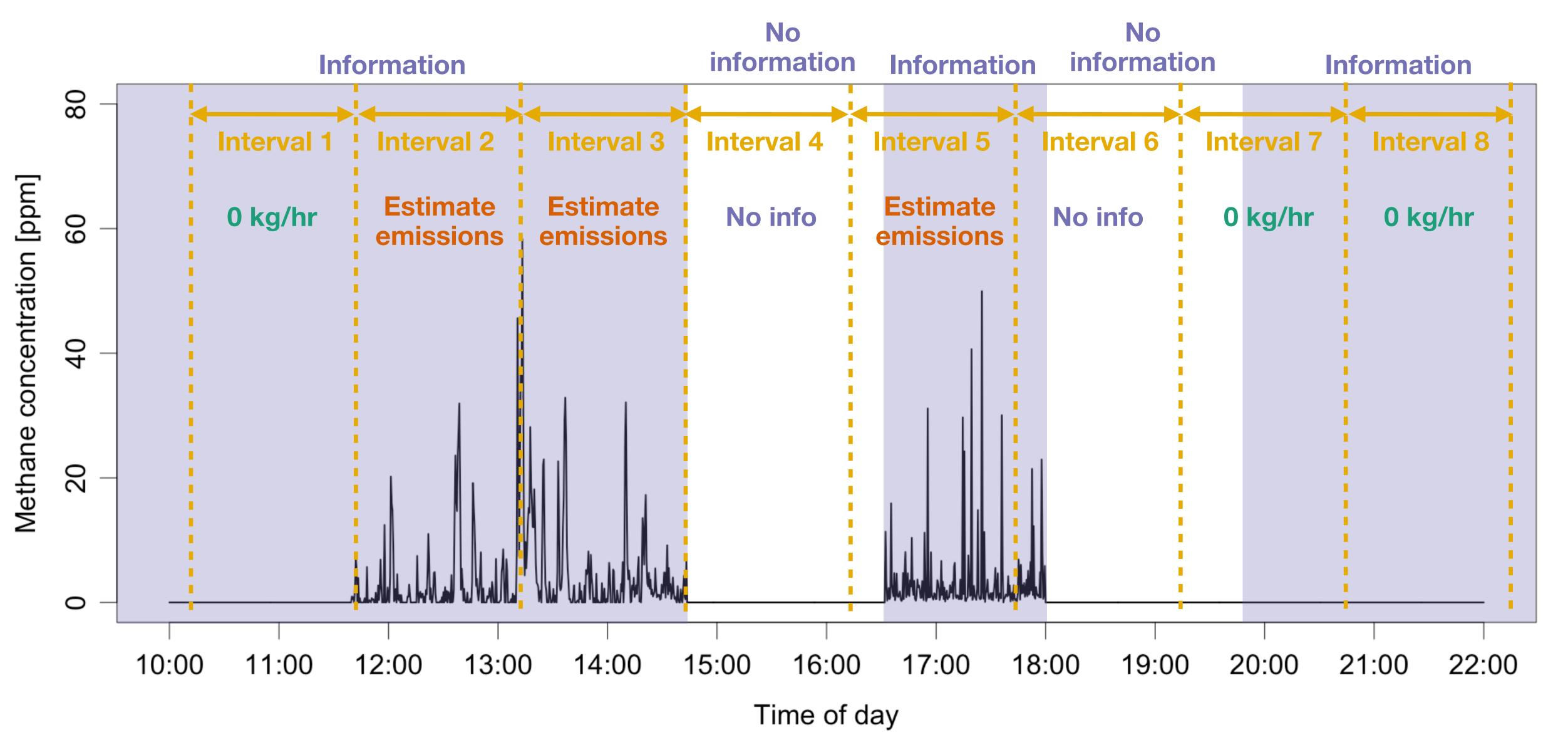
Before building an inventory, we need to identify when an interval has no information, no emissions,

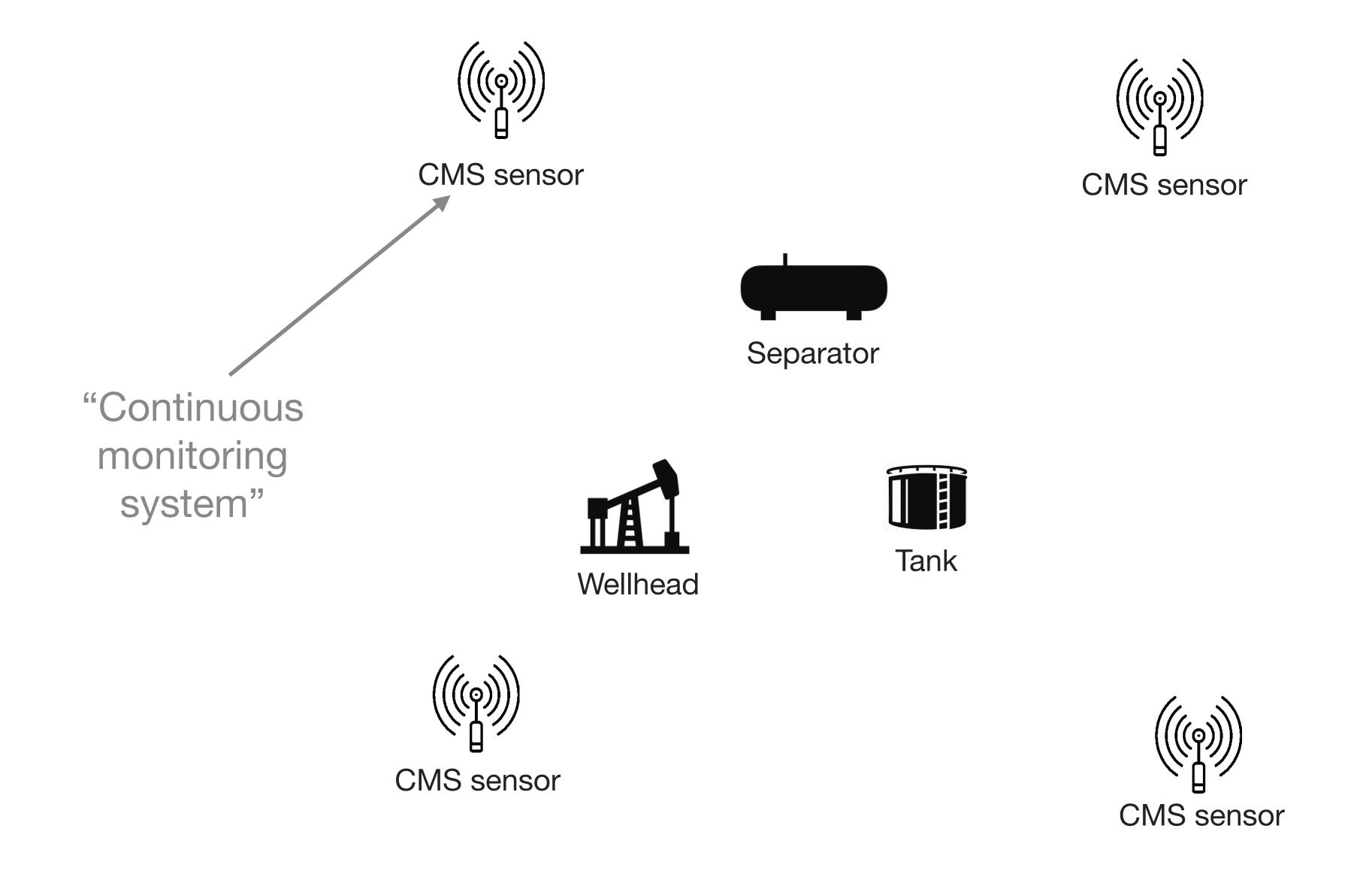


Before building an inventory, we need to identify when an interval has no information, no emissions, or a non-zero emission

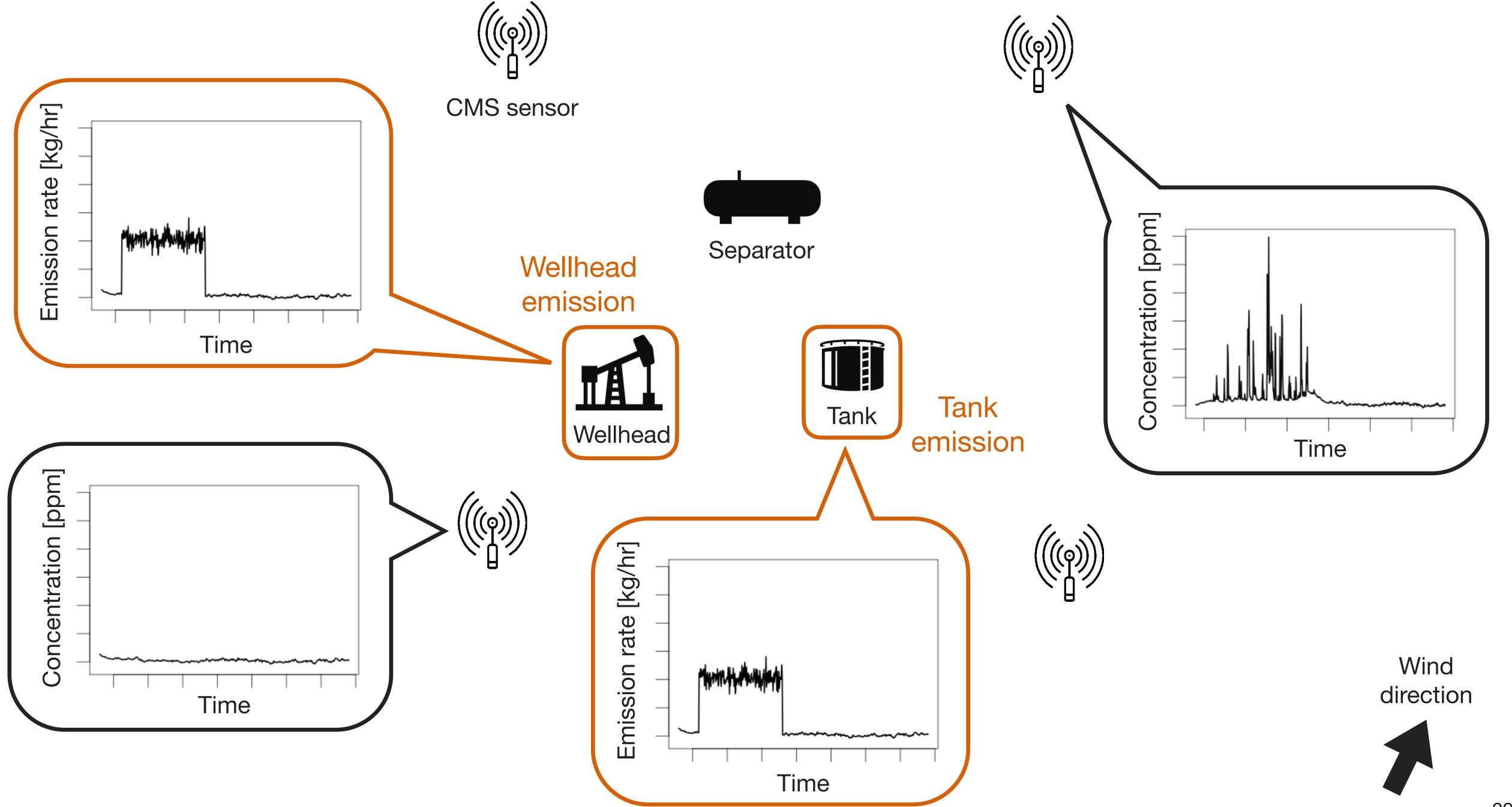


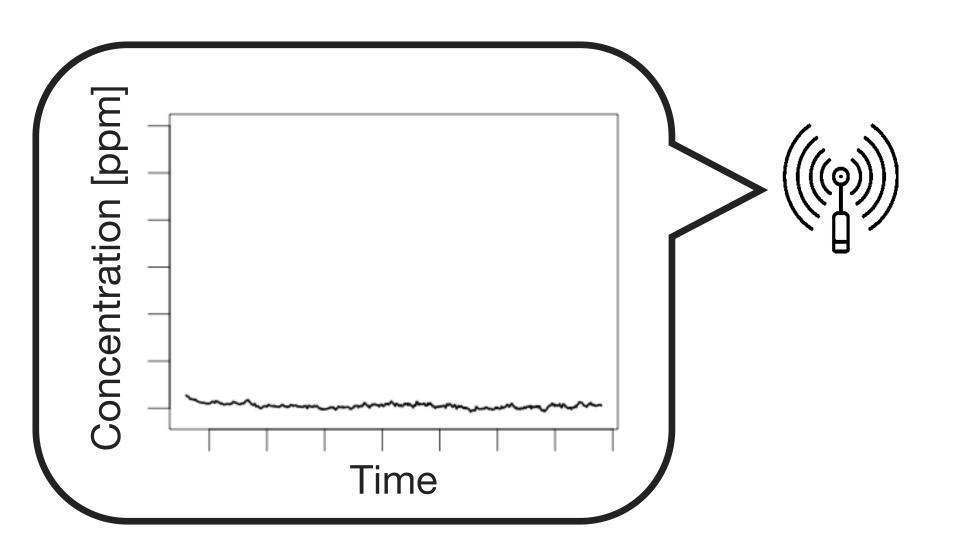
How do you get the inventory? We're almost there...

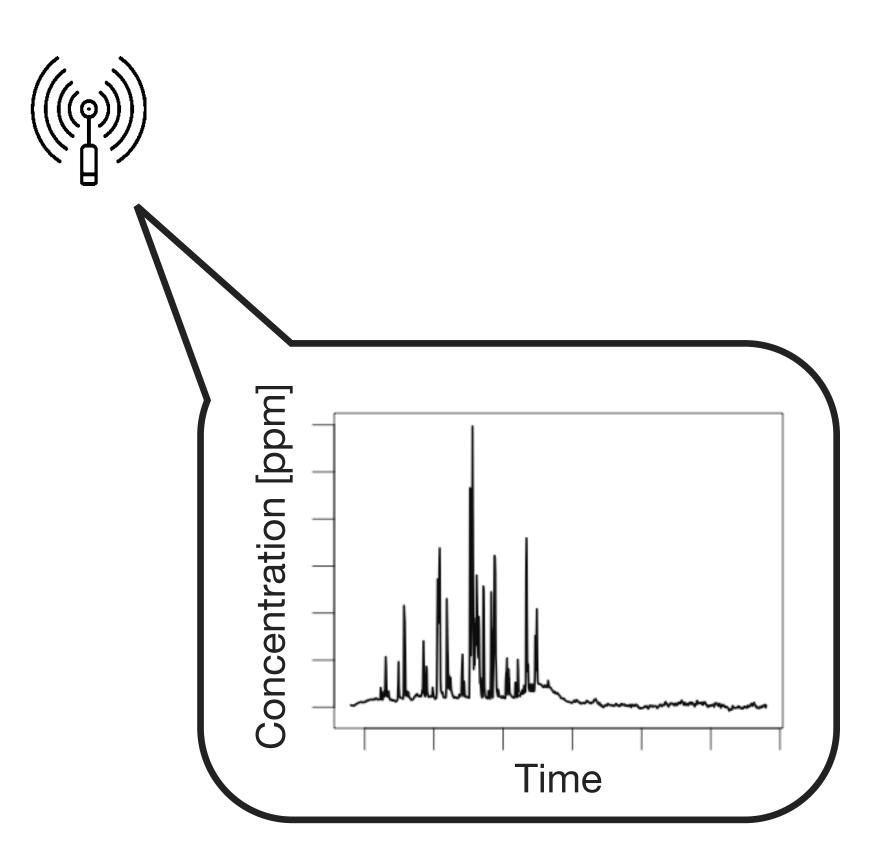




Estimating multi-source emissions with continuous monitors







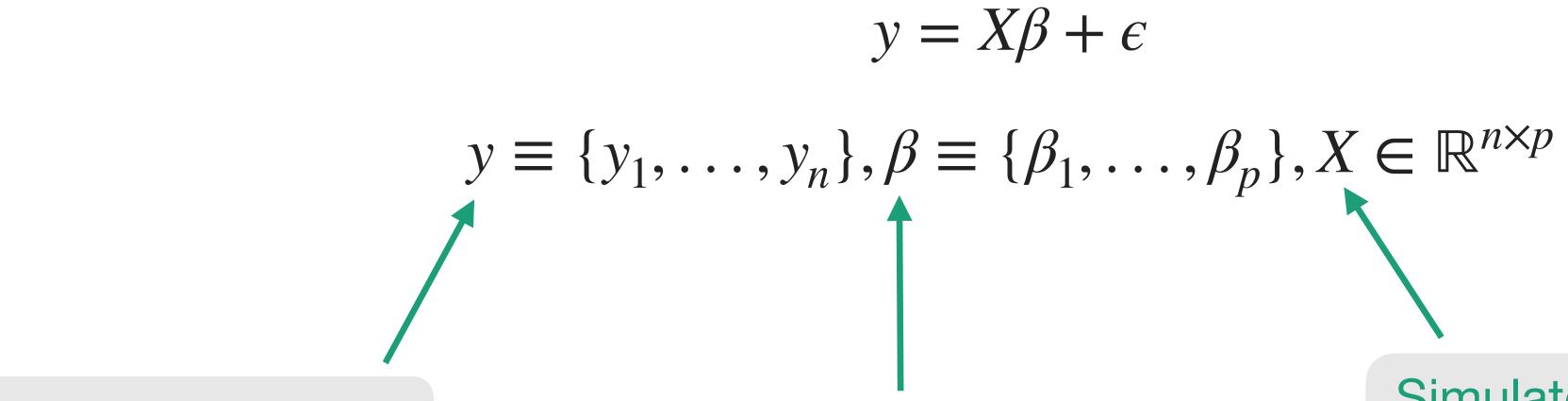
Wind direction

Multisource detection, localization, and quantification (MDLQ) model

Assume a multiple linear regression model at the data level

n = number of observations

p = number of potential sources



Concentration
observations
from CMS sensors

Emission rates for each source

Simulated concentrations from forward model, with each column assuming a different source

Gaussian puff model: mathematical definition

Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with downwind vector

$$c_{p}(x, y, z, t, Q) = \frac{Q}{(2\pi)^{3/2} \sigma_{y}^{2} \sigma_{z}} \exp\left(-\frac{(x - ut)^{2} + y^{2}}{2\sigma_{y}^{2}}\right) \left[\exp\left(-\frac{(z - H)^{2}}{2\sigma_{z}^{2}}\right) + \exp\left(-\frac{(z + H)^{2}}{2\sigma_{z}^{2}}\right)\right]$$

Predicted methane concentration at sensor location (x,y,z) and time t from puff *p*

Exponential decay in concentration in horizontal plane (x, y)

Exponential decay in concentration in vertical dimension (z)

Gaussian puff model: mathematical definition

Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with downwind vector

Total volume of methane contained in puff p

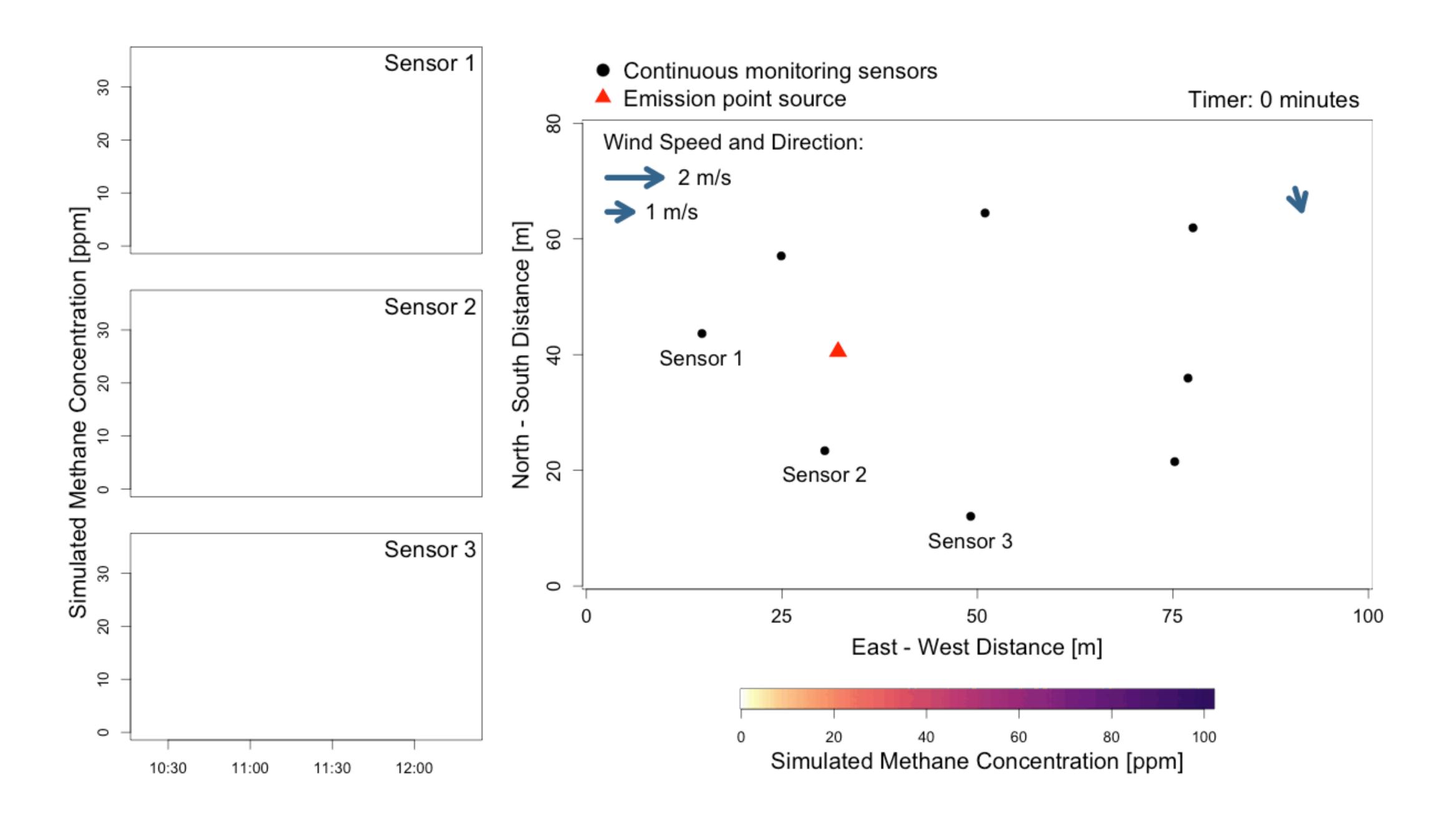
Total concentration
$$c(x, y, z, t, Q) = \sum_{p=1}^{\infty} c_p(x, y, z, t, Q)$$
 at (x, y, z, t)

$$c_{p}(x, y, z, t, Q) = \frac{Q}{(2\pi)^{3/2} \sigma_{y}^{2} \sigma_{z}} \exp\left(-\frac{(x - ut)^{2} + y^{2}}{2\sigma_{y}^{2}}\right) \left[\exp\left(-\frac{(z - H)^{2}}{2\sigma_{z}^{2}}\right) + \exp\left(-\frac{(z + H)^{2}}{2\sigma_{z}^{2}}\right)\right]$$

Predicted methane concentration at sensor location (x,y,z) and time t from puff *p*

Exponential decay in concentration in horizontal plane (x, y)

Exponential decay in concentration in vertical dimension (z)

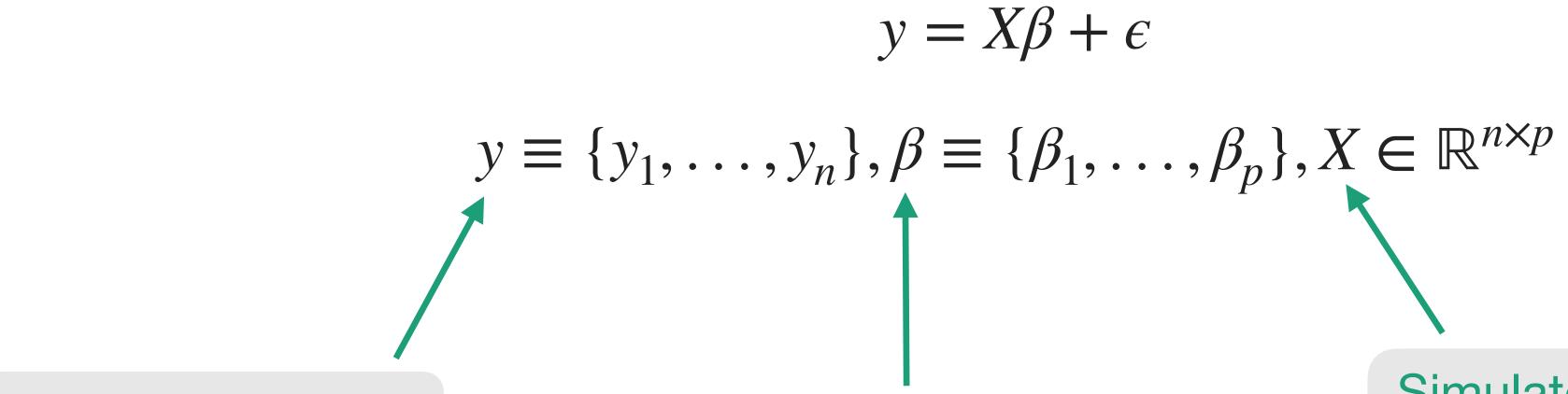


Multisource detection, localization, and quantification (MDLQ) model

Assume a multiple linear regression model at the data level

n = number of observations

p = number of potential sources



Concentration
observations
from CMS sensors

Emission rates for each source

Simulated concentrations from forward model, with each column assuming a different source

Assume a multiple linear regression model at the data level

n = number of observationsp = number of potential sources

$$y = X\beta + \epsilon$$
$$y \equiv \{y_1, \dots, y_n\}, \beta \equiv \{\beta_1, \dots, \beta_p\}, X \in \mathbb{R}^{n \times p}$$

Assume that the errors $\epsilon \equiv \{\epsilon_1, \dots, \epsilon_n\}$ are are identically distributed, Gaussian, and autocorrelated such that

$$\epsilon \sim N(0, \sigma^2 R)$$

Assume a multiple linear regression model at the data level

n = number of observations

p = number of potential sources

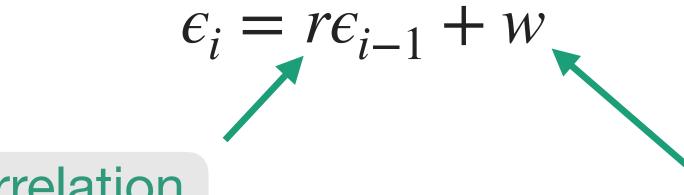
$$y = X\beta + \epsilon$$

$$y \equiv \{y_1, \dots, y_n\}, \beta \equiv \{\beta_1, \dots, \beta_p\}, X \in \mathbb{R}^{n \times p}$$

Assume that the errors $\epsilon \equiv \{\epsilon_1, \dots, \epsilon_n\}$ are are identically distributed, Gaussian, and autocorrelated such that

$$\epsilon \sim N(0, \sigma^2 R)$$

Let the errors follow an AR(1) process such that



Autocorrelation coefficient

Gaussian white noise

Assume a multiple linear regression model at the data level

n = number of observationsp = number of potential sources

$$y = X\beta + \epsilon$$

$$y \equiv \{y_1, \dots, y_n\}, \beta \equiv \{\beta_1, \dots, \beta_p\}, X \in \mathbb{R}^{n \times p}$$

Assume that the errors $\epsilon \equiv \{\epsilon_1, \dots, \epsilon_n\}$ are are identically distributed, Gaussian, and autocorrelated such that

$$\epsilon \sim N(0, \sigma^2 R)$$

Let the errors follow an AR(1) process such that

$$\epsilon_i = r\epsilon_{i-1} + w$$

This gives us: $y \sim N(X\beta, \sigma^2 R)$

 $y = X\beta + \epsilon$ Data-level:

 $\epsilon \sim N(0, \sigma^2 R)$

n = number of observations p = number of potential sources

The remainder of the hierarchy takes the following form

Spike-and-slab prior allows samples to be identically zero

 $z_i \sim \text{Bernoulli}(\theta_i)$

$$z_i = 0$$

"Slab" component is non-negative

Proportion of samples where $z_i = 1$ gives

posterior probability that source i is emitting

 $\theta_i \sim \text{Beta}(a_i, b_i) \blacktriangleleft$

 $\tau_i^2 \sim \text{Inv-Gamma}(c_i, d_i) \blacktriangleleft$

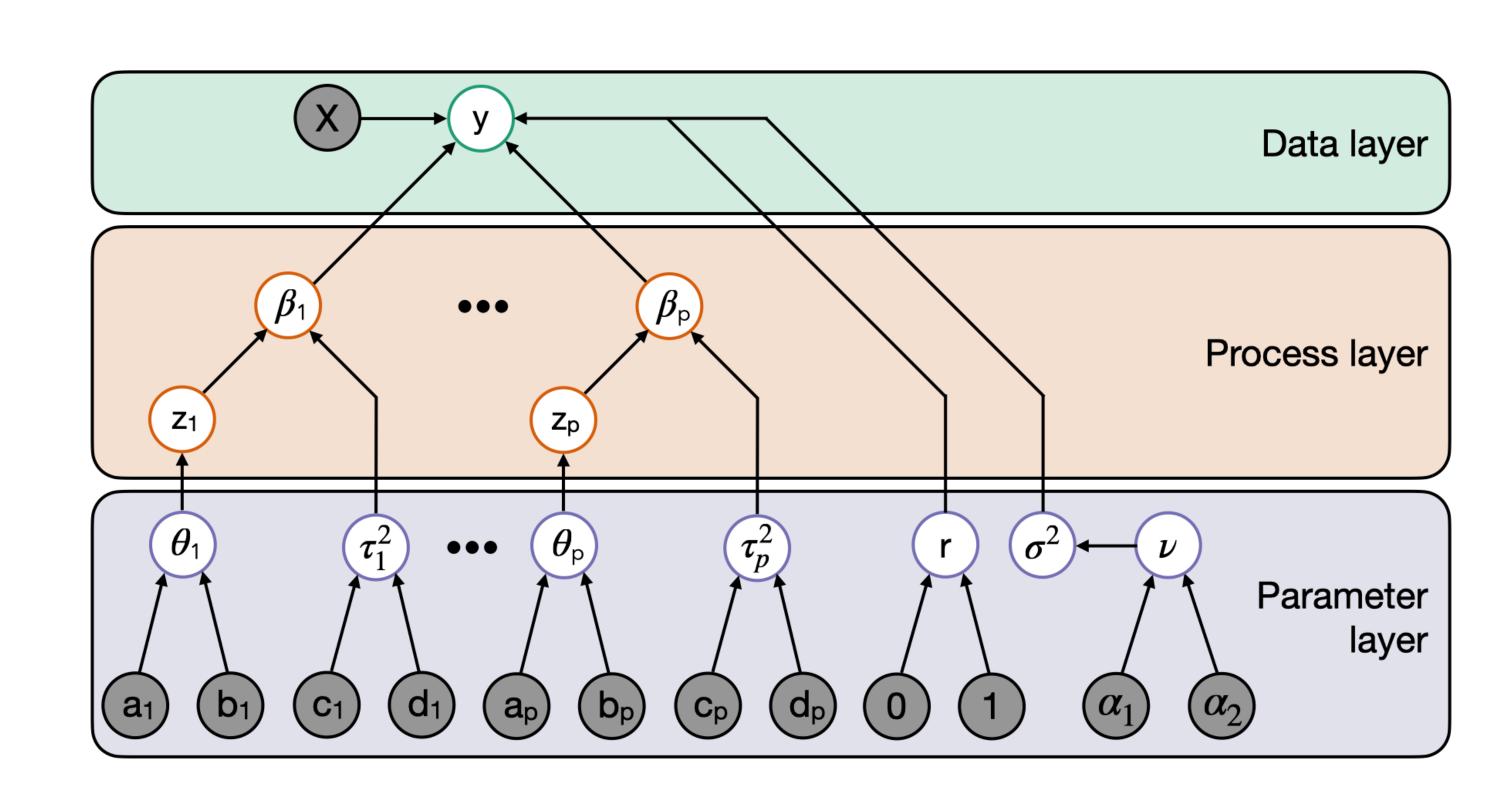
 $\sigma^2 \sim \text{Inv-Gamma}(\nu/2, \nu/2)$

 $\nu \sim \text{Inv-Gamma}(\alpha_1, \alpha_2)$

 $r \sim \text{Uniform}(0,1)$

ai, bi, ci, di can contain operator insight

$$eta_i \sim egin{cases} 0, & z_i = 0 \ \operatorname{Exp}(au_i^2 \sigma^2), & z_i = 1 \end{cases}$$
 $z_i \sim \operatorname{Bernoulli}(heta_i)$
 $heta_i \sim \operatorname{Beta}(a_i, b_i)$
 $au_i^2 \sim \operatorname{Inv-Gamma}(c_i, d_i)$
 $\sigma^2 \sim \operatorname{Inv-Gamma}(
u/2,
u/2)$
 $u \sim \operatorname{Inv-Gamma}(\alpha_1, \alpha_2)$
 $u \sim \operatorname{Uniform}(0, 1)$



Sampling from the posterior

We can derive Gibbs updates for all parameters except ν .

$$\theta_{i}|\xi \sim \text{Beta}(z_{i} + a_{i}, 1 - z_{i} + b_{i})$$

$$\sigma^{2}|\xi \sim \text{Inv-Gamma}\left(\frac{\nu}{2} + \frac{n}{2}, \frac{\nu}{2} + \frac{1}{2}(y - X\beta)^{T}R^{-1}(y - X\beta)\right)$$

$$r|\xi \sim \begin{cases} \mathcal{N}(X\beta, \sigma^{2}R) & 0 < r < 1\\ 0 & \text{otherwise} \end{cases}$$

$$\tau_i^2 | \xi \sim \text{Inv-Gamma}\left(z_i + c_i, \frac{\beta_i}{\sigma^2} + d_i\right)$$

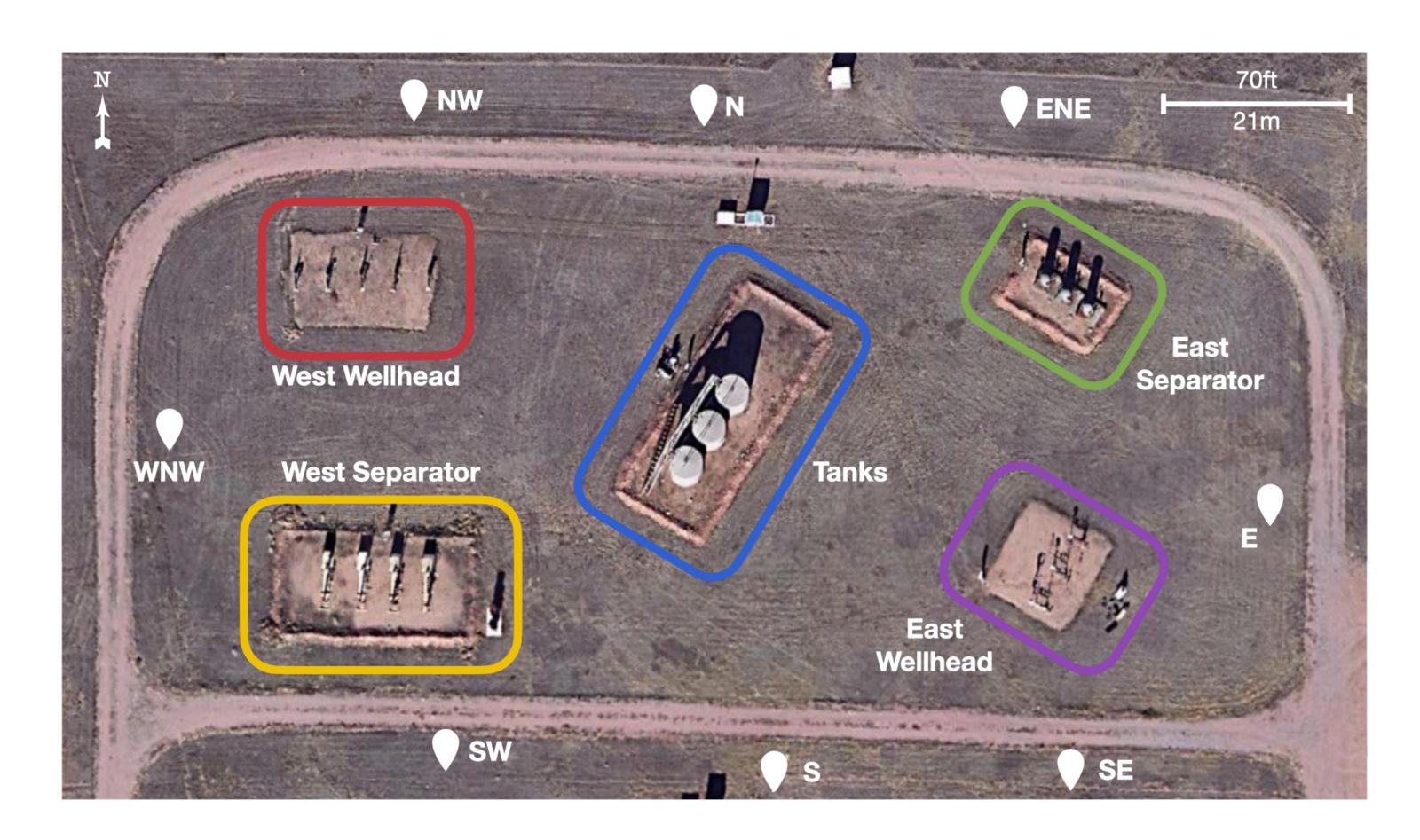
$$\beta_i | \xi \sim \begin{cases} 0 & z_i = 0 \\ \mathcal{N} \left(\left(\frac{X^T R^{-1} X}{\sigma^2} \right)^{-1} \left(\frac{X^T R^{-1} y}{\sigma^2} - \frac{e_i}{\tau_i^2 \sigma^2} \right), \left(\frac{X^T R^{-1} X}{\sigma^2} \right)^{-1} \right) & z_i = 1 \end{cases}$$

Iterative samples from each full conditional gives you samples from the joint posterior!

$$z_{i} | \xi \sim \text{Bernoulli} \left(1 - \frac{1 - \theta_{i}}{(1 - \theta_{i}) + \theta_{i} \left(\frac{1}{\tau_{i}^{2} \sigma^{2}} \right) \exp \left(\frac{\left(\sum_{j=1}^{n} (w_{j} X_{j,i}^{*} + w_{j}^{*} X_{j,i}) - \frac{2}{\tau_{i}^{2}} \right)^{2}}{4\sigma^{2} \sum_{j=1}^{n} X_{j,i} X_{j,i}^{*}} \right) \left(\frac{2\sigma^{2} \pi}{\sum_{j=1}^{n} X_{j,i} X_{j,i}^{*}} \right)^{1/2} \left(\frac{1}{2} \right) \right)$$

 $\nu | \xi \sim ?$ (Use a Metropolis-Hastings step)

Model evaluation on multi-source controlled release data



Methane Emissions Technology Evaluation Center (METEC)

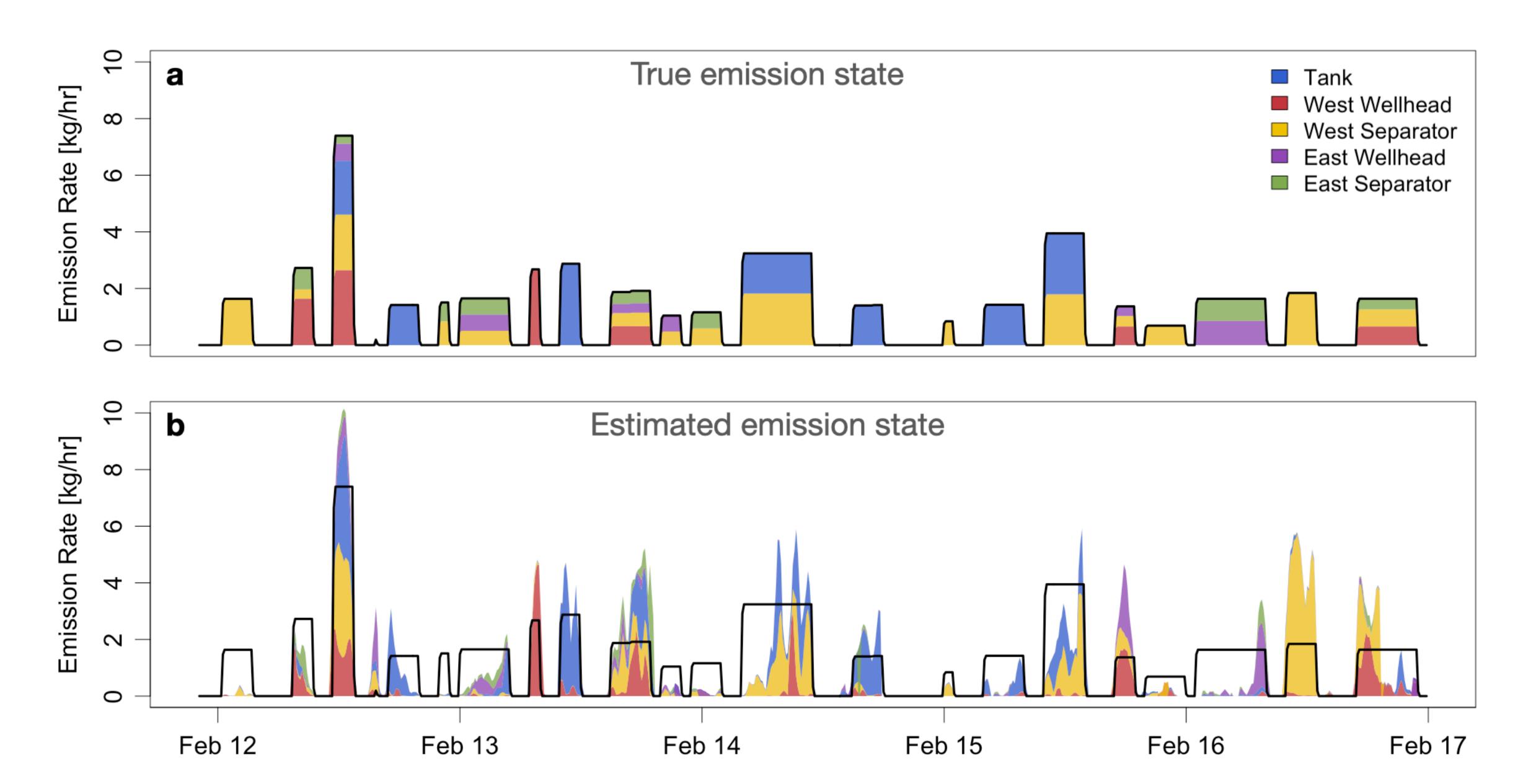
337 controlled releases:

- 99 (29%) single-source
- 238 (71%) multi-source

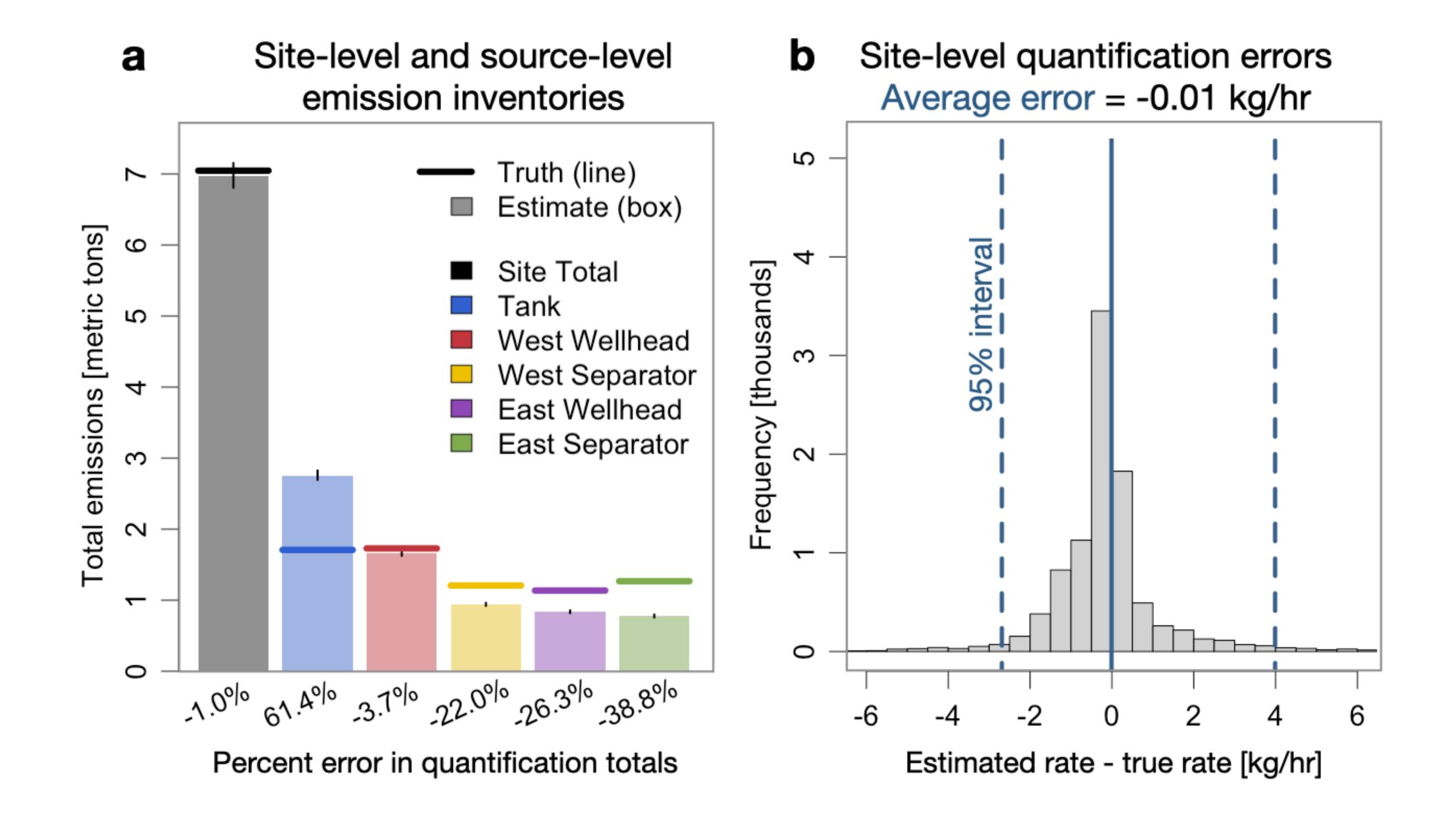
Emission rates range from **0.08** to **7.2** kg/hr

Emission durations range from **0.5** to **8** hours

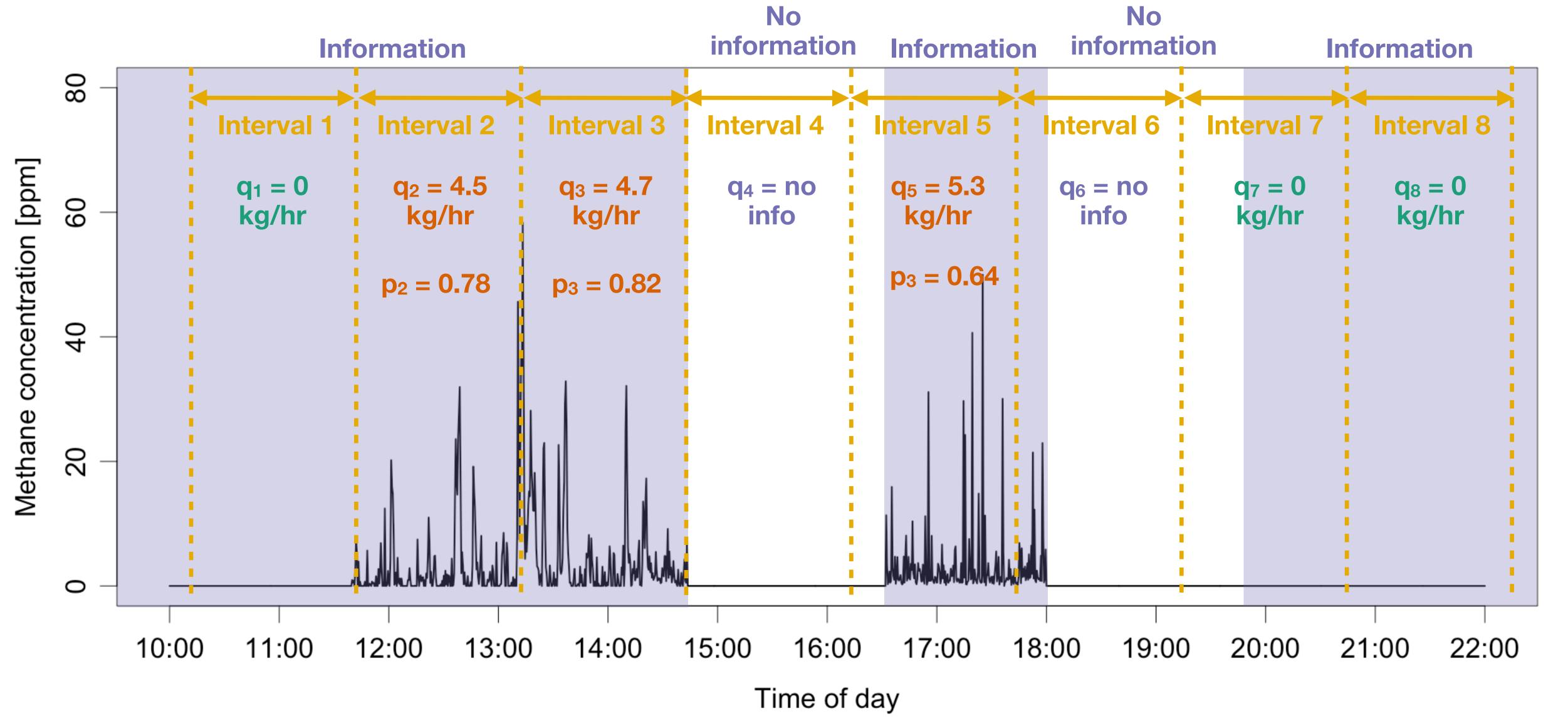
Model evaluation on multi-source controlled release data



Model evaluation on multi-source controlled release data



Need to identify when an interval is no information, no emissions, or a non-zero emission



Measurement-based inventory results for the Appalachian Methane Initiative (AMI)

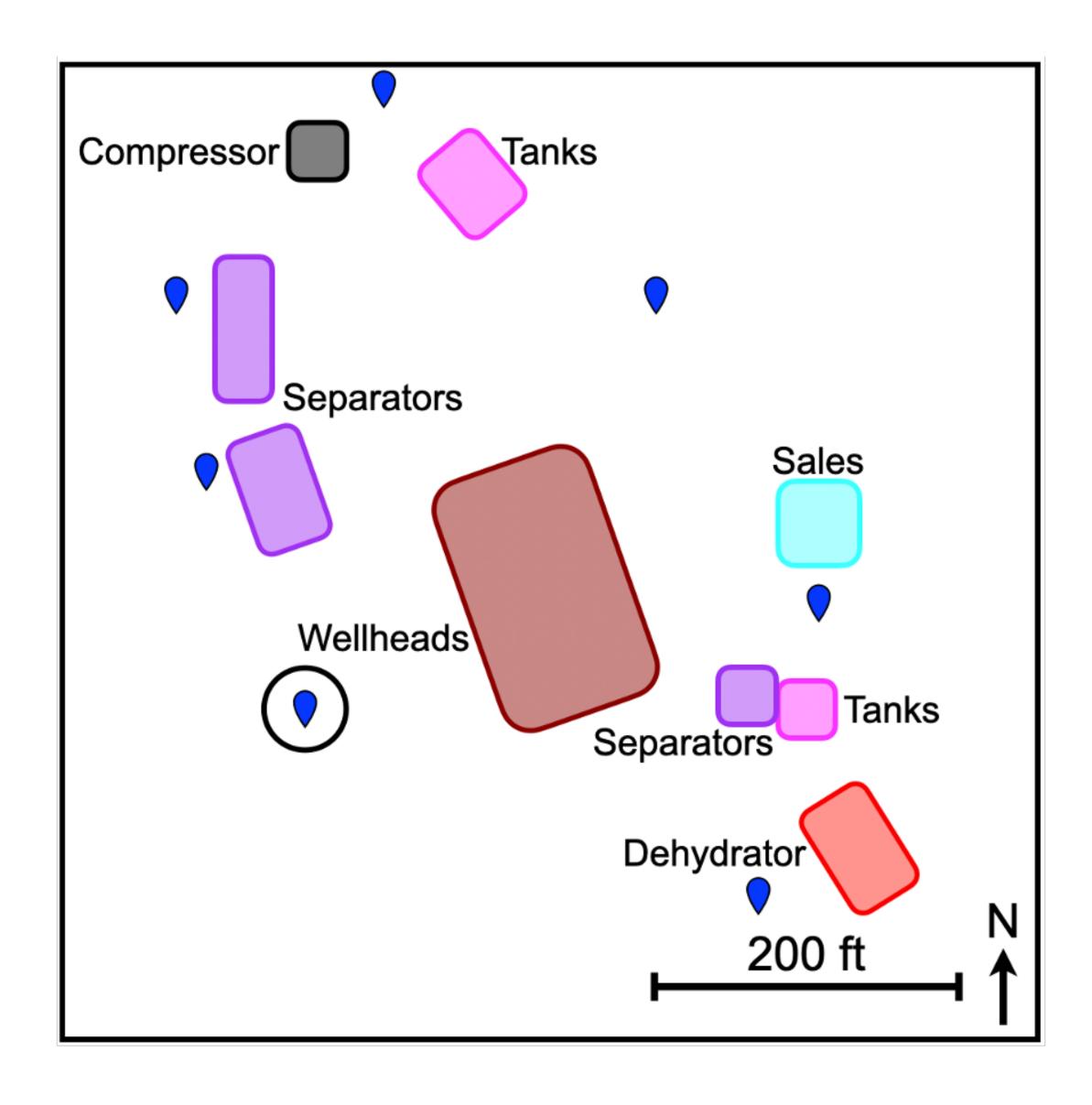
We have data from 26 production sites

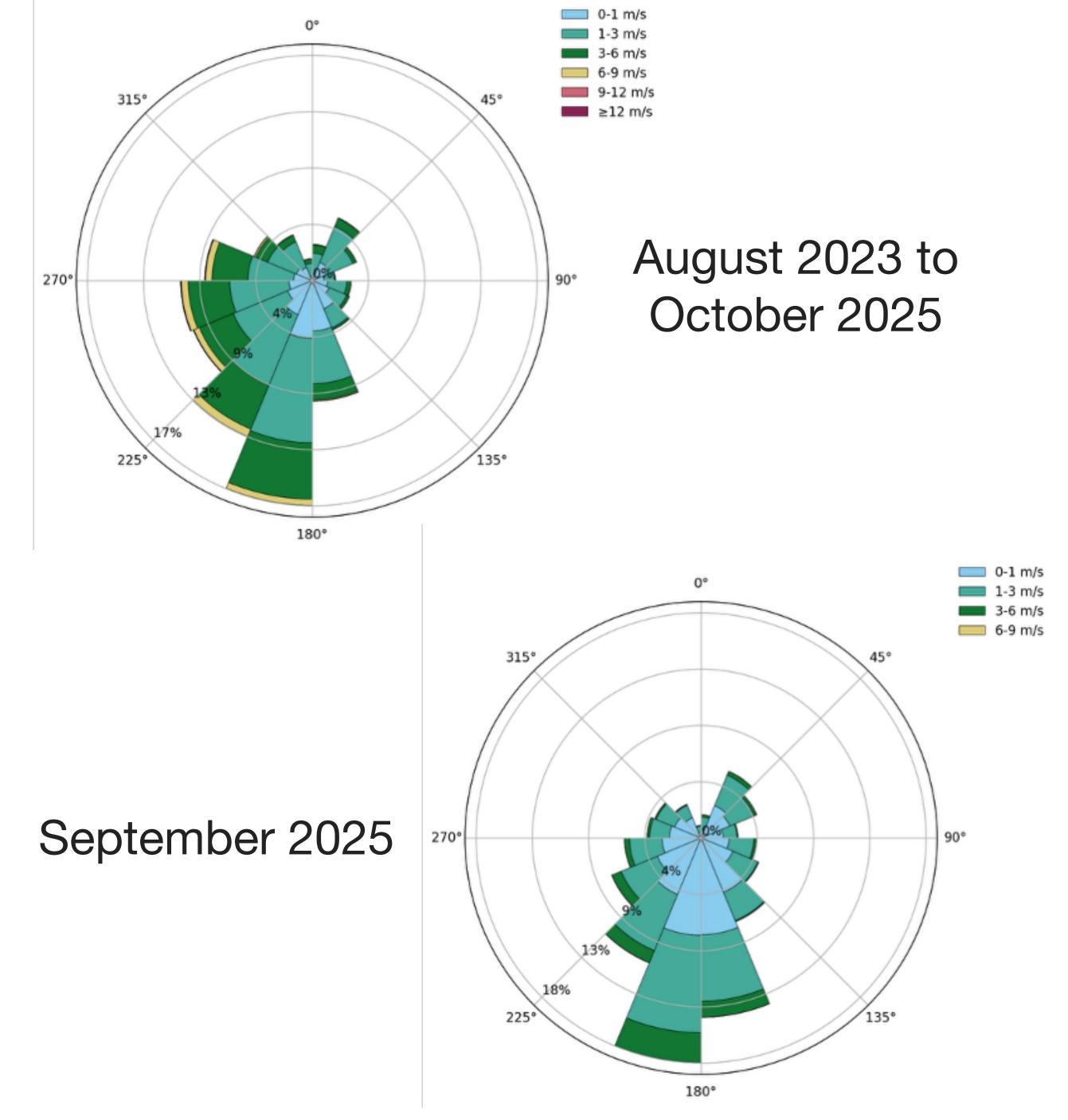
- All are equipped with high-end continuous monitoring point sensors
- Number of sensors per site varies from 3 to 7

57.82 total years of data

Average of 2.22 years per site

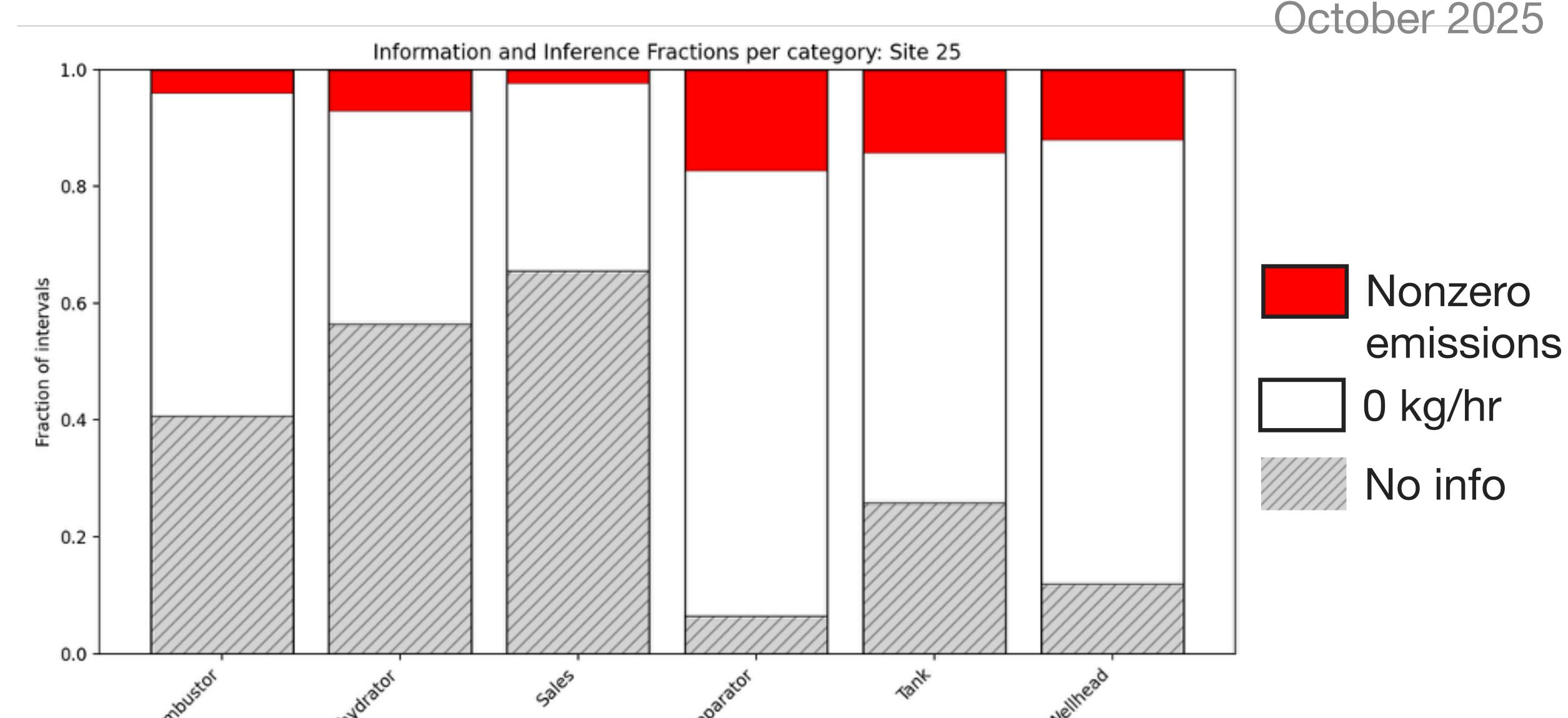
Example: Site 25





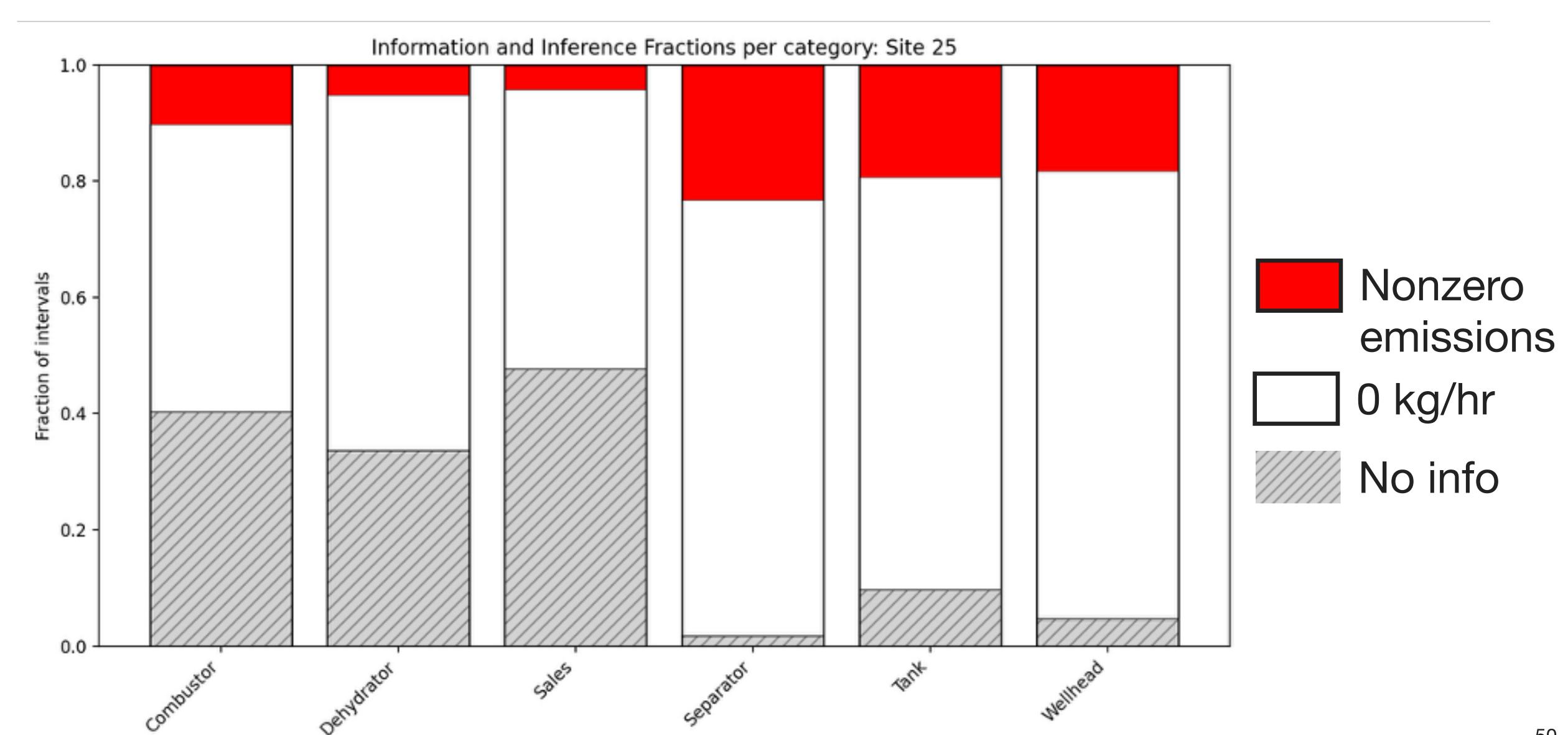
Ratio of no information to information

August 2023 to

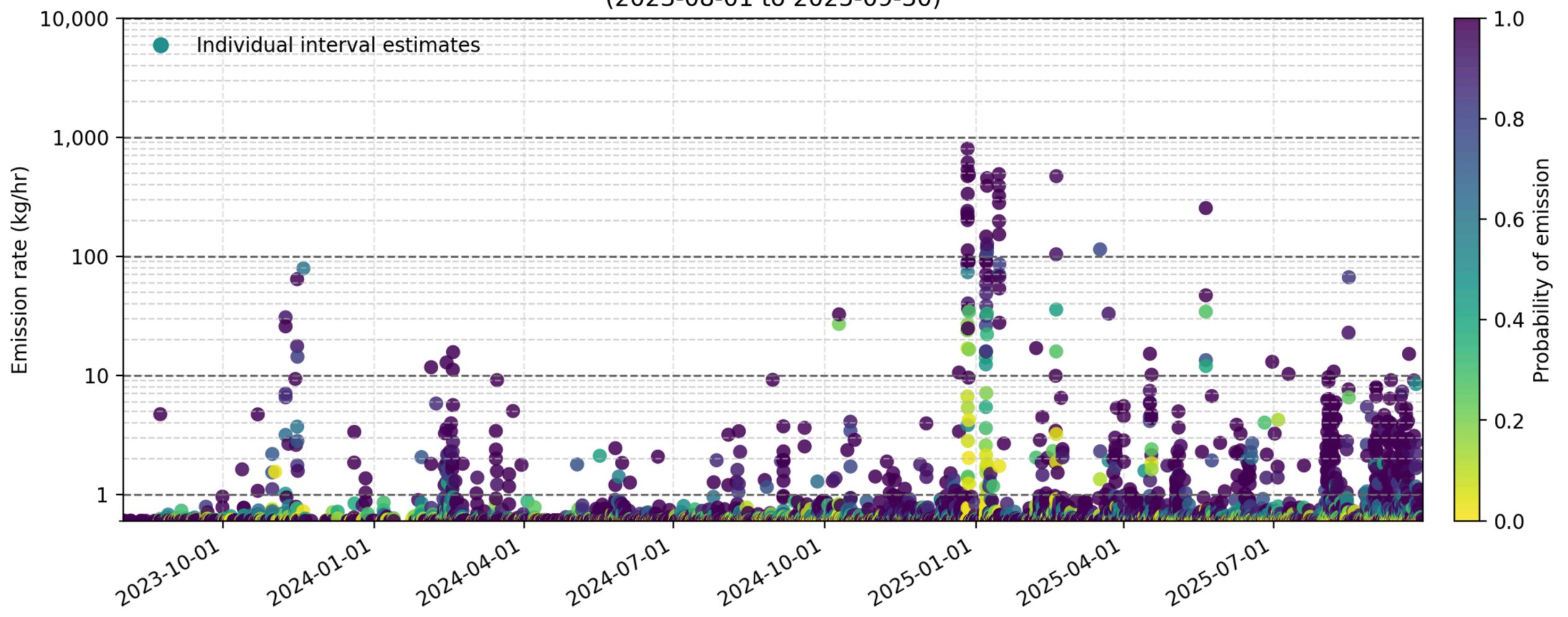


Ratio of no information to information

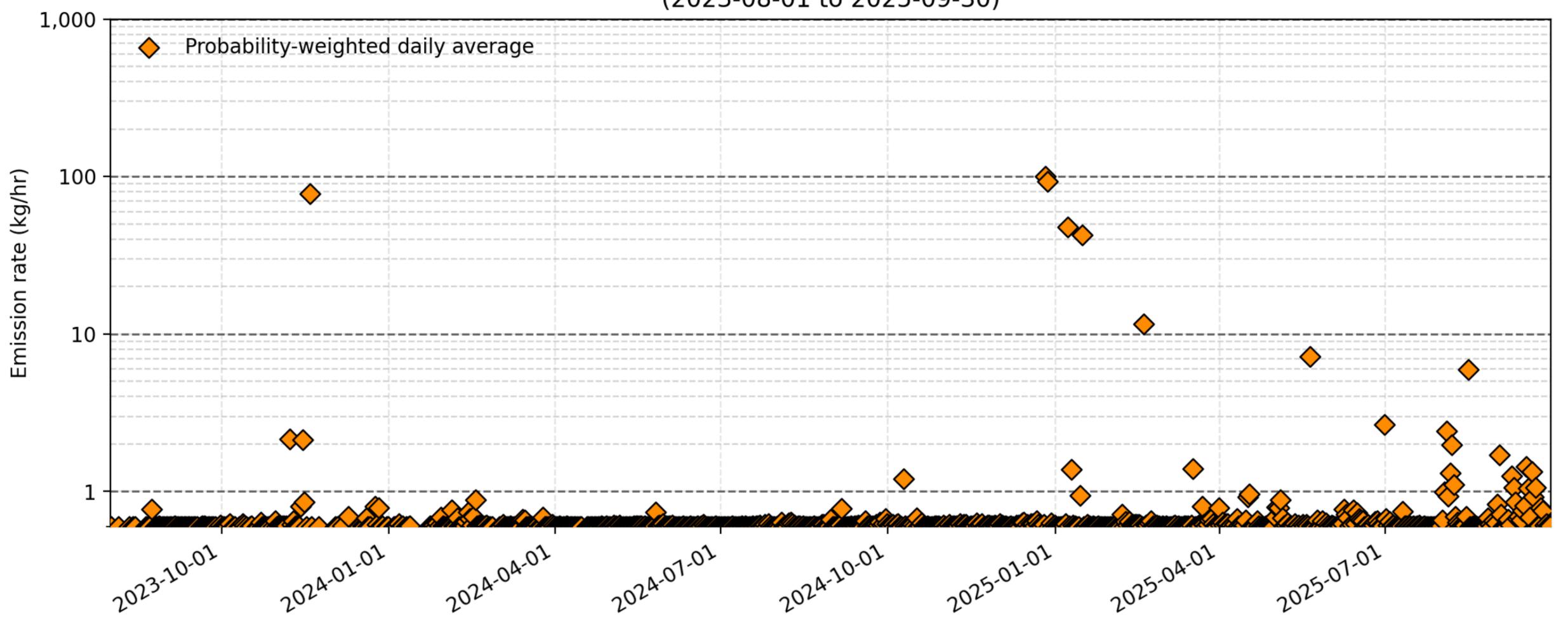
September 2025

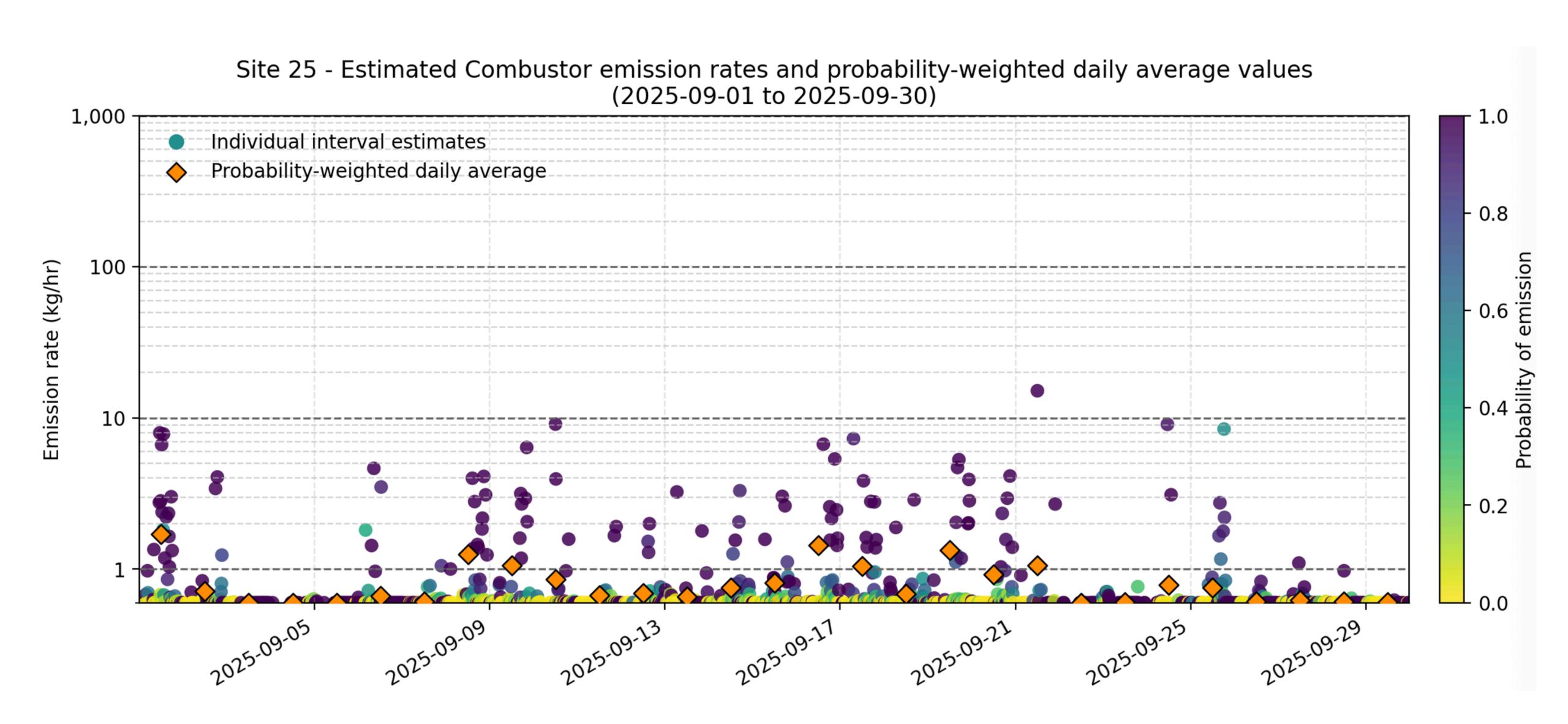


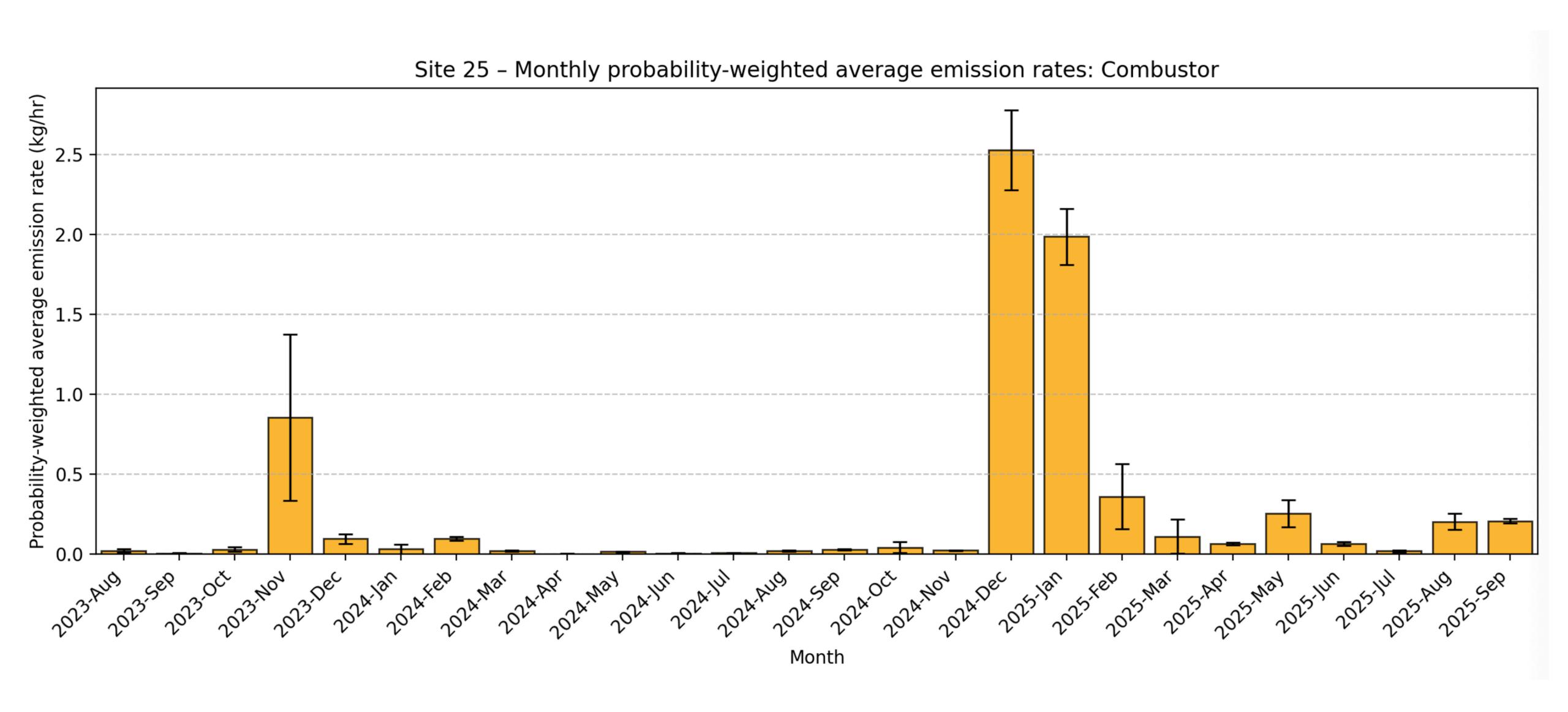
Site 25 - Estimated Combustor emission rates (2023-08-01 to 2025-09-30)

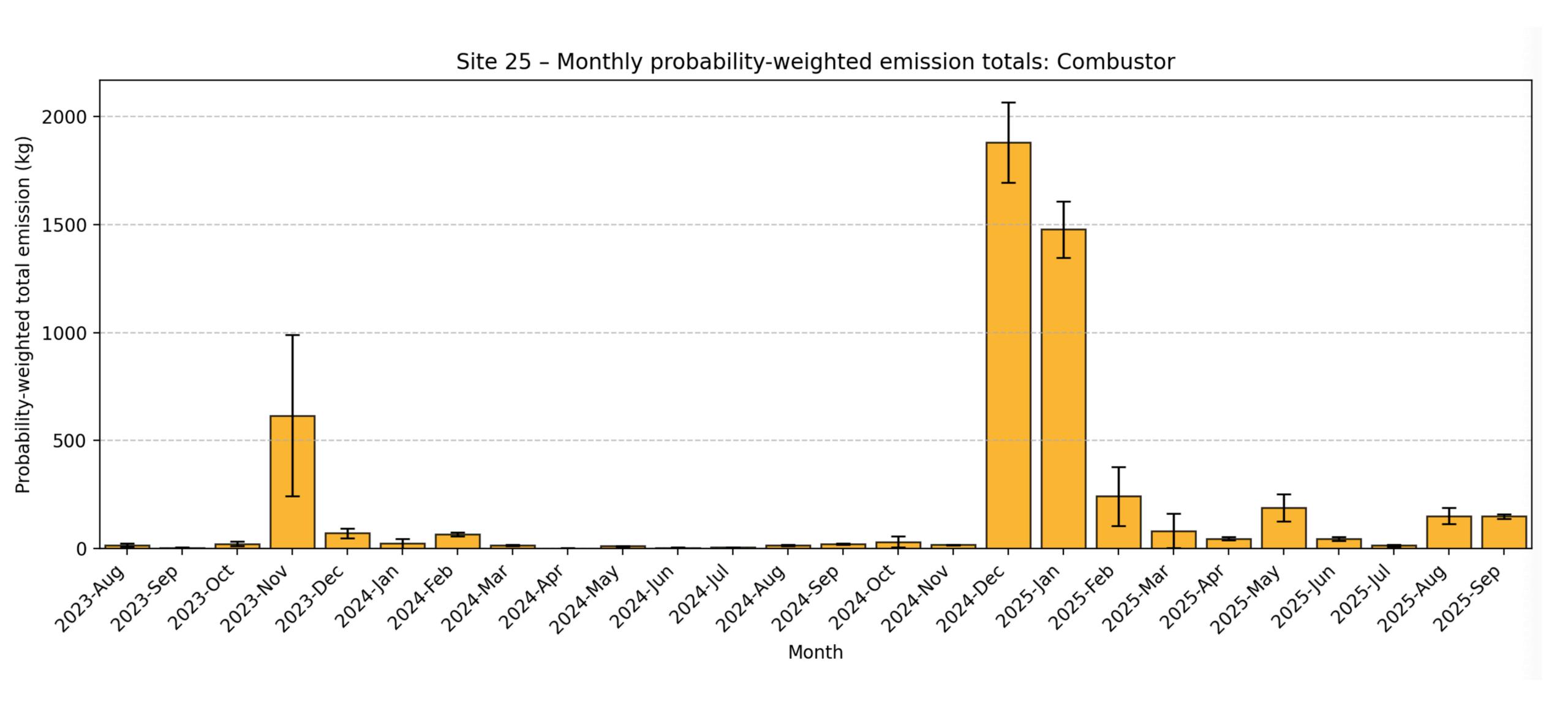


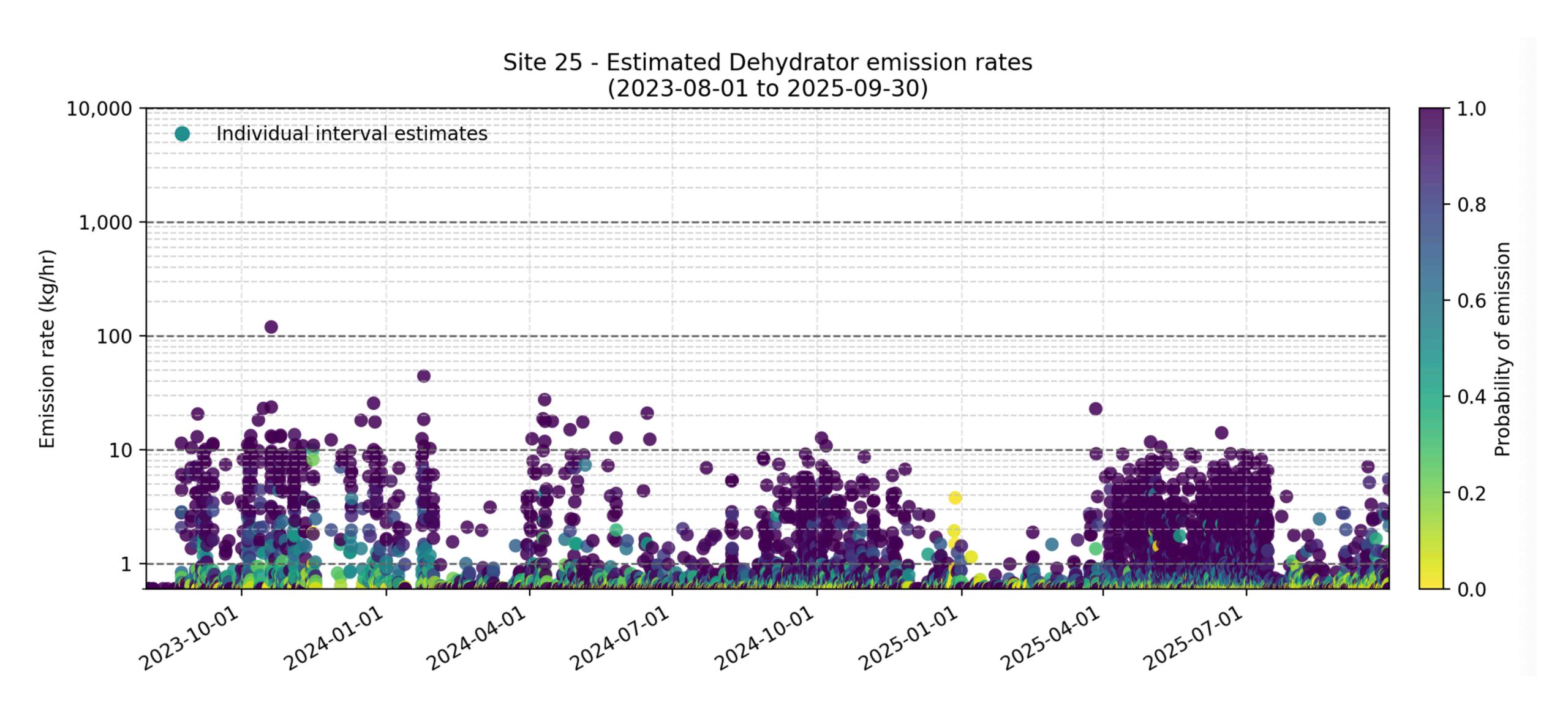
Site 25 - Estimated Combustor probability-weighted daily average values (2023-08-01 to 2025-09-30)

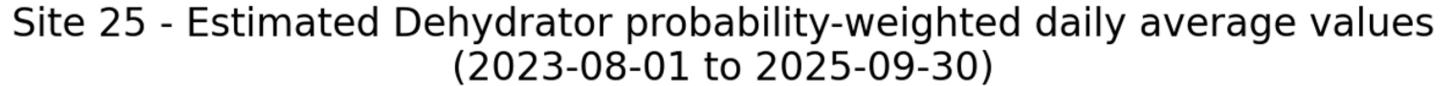


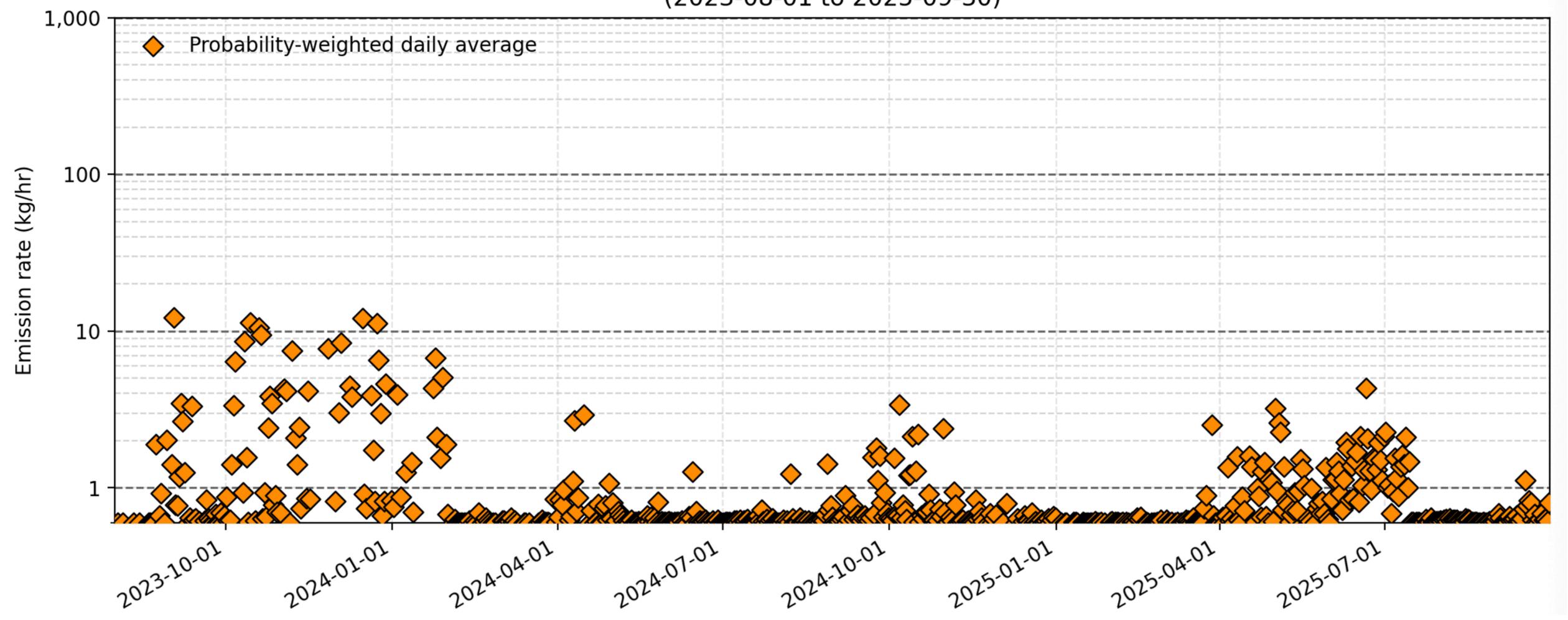




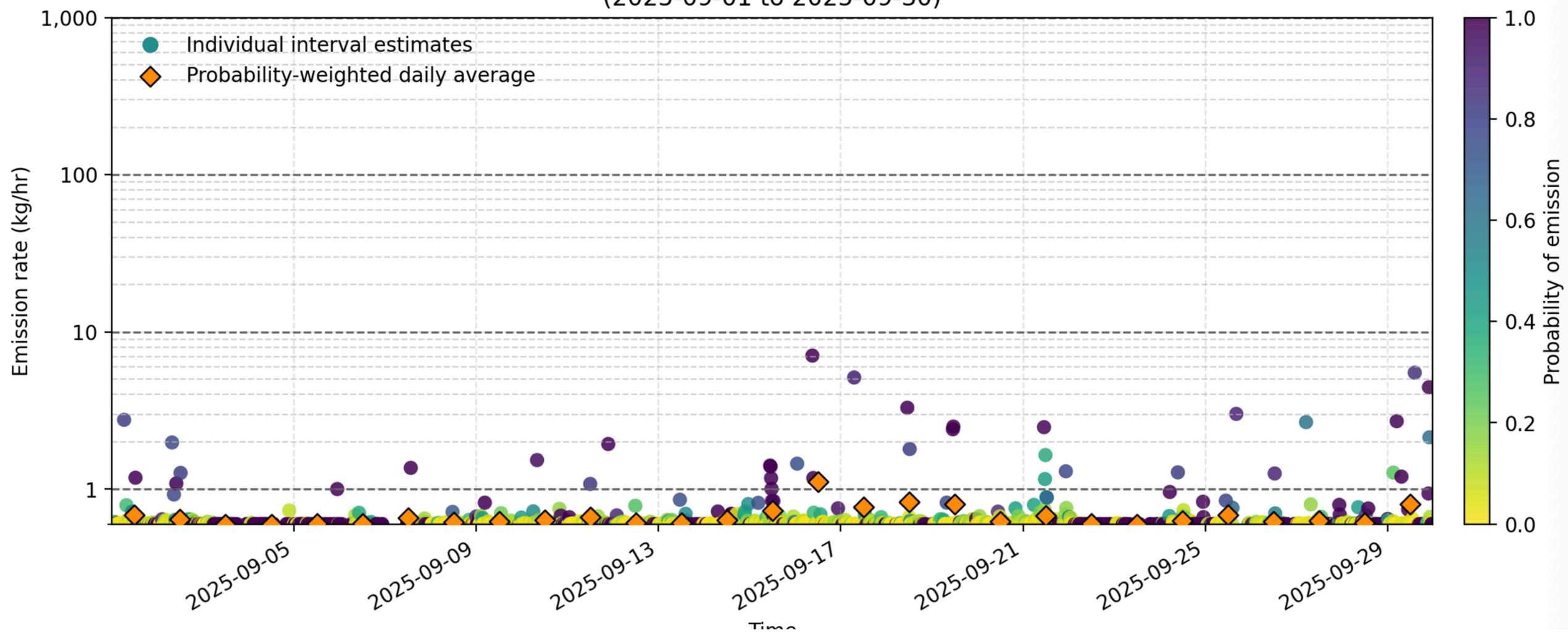


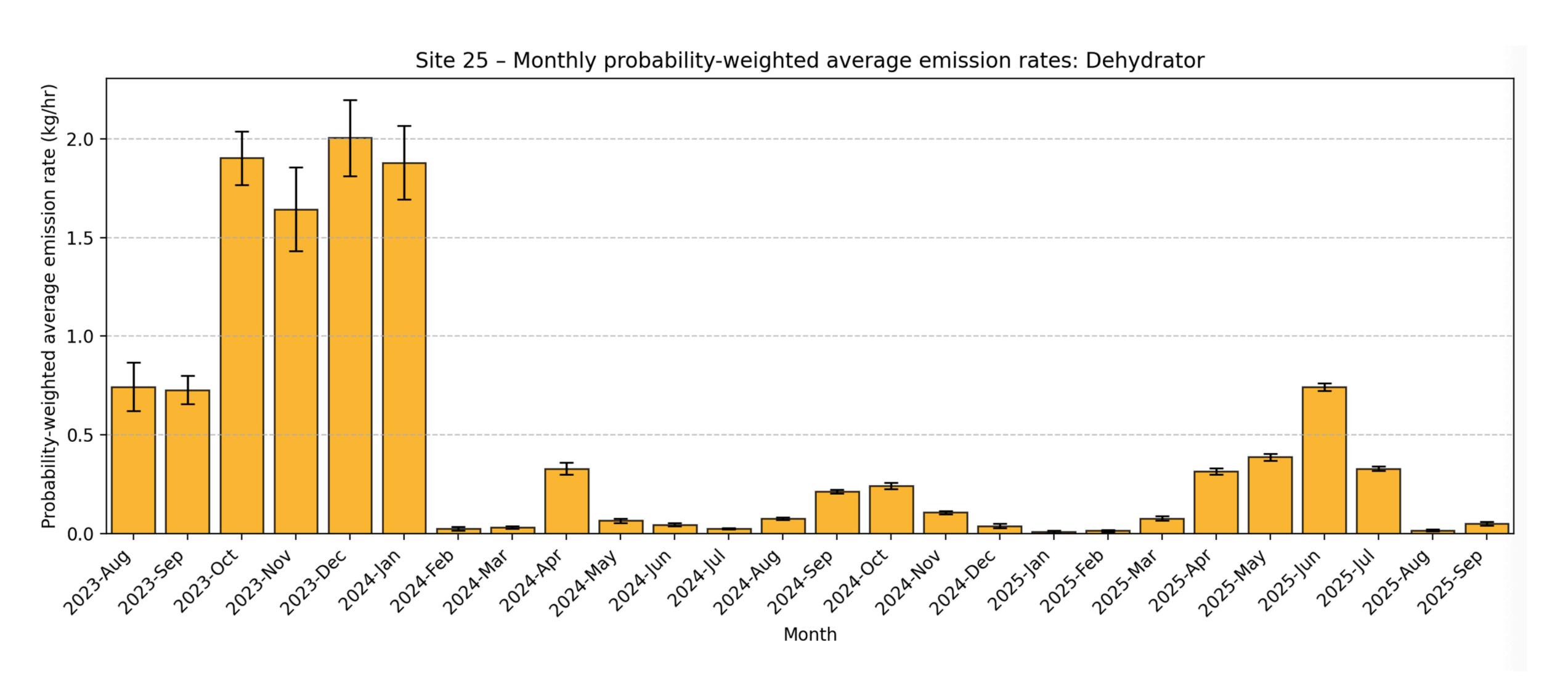


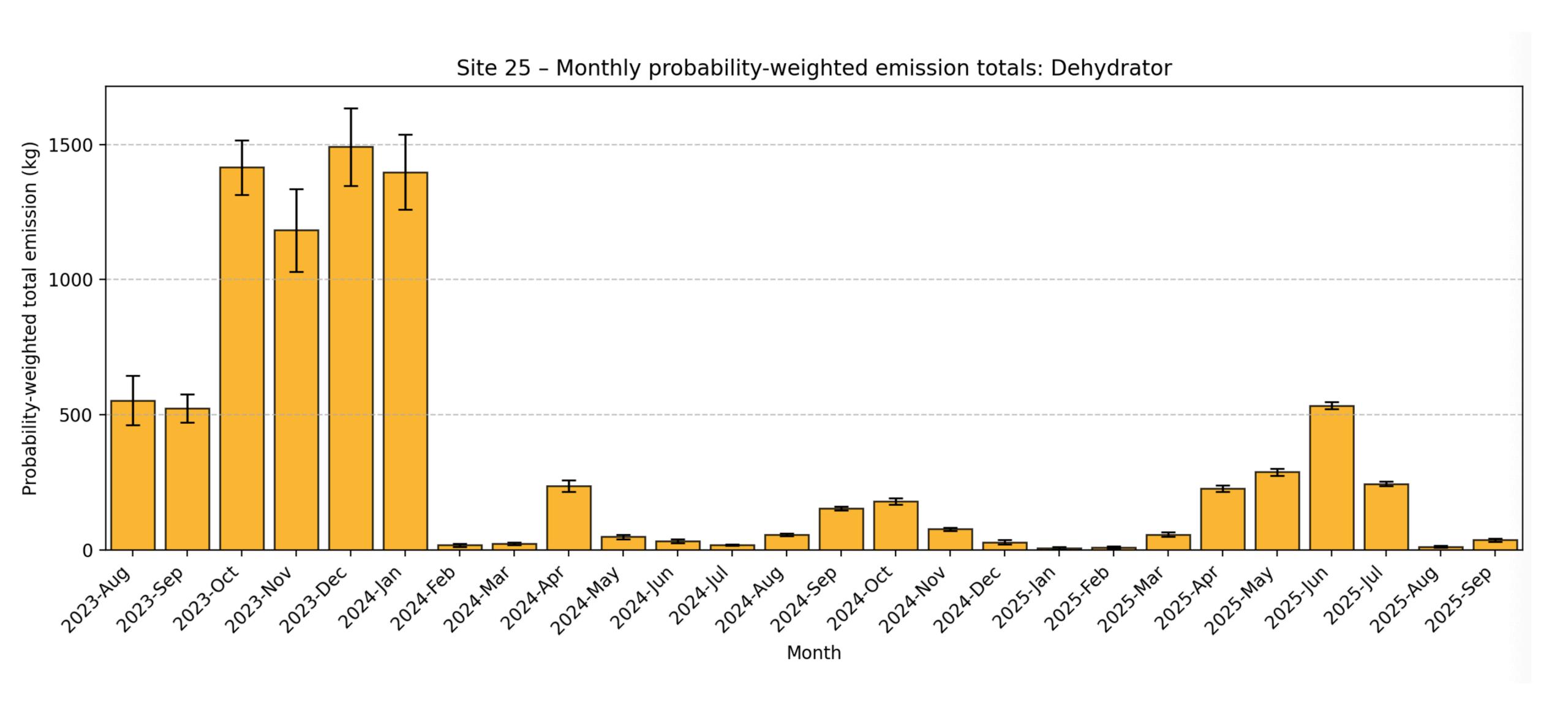


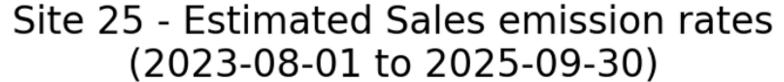


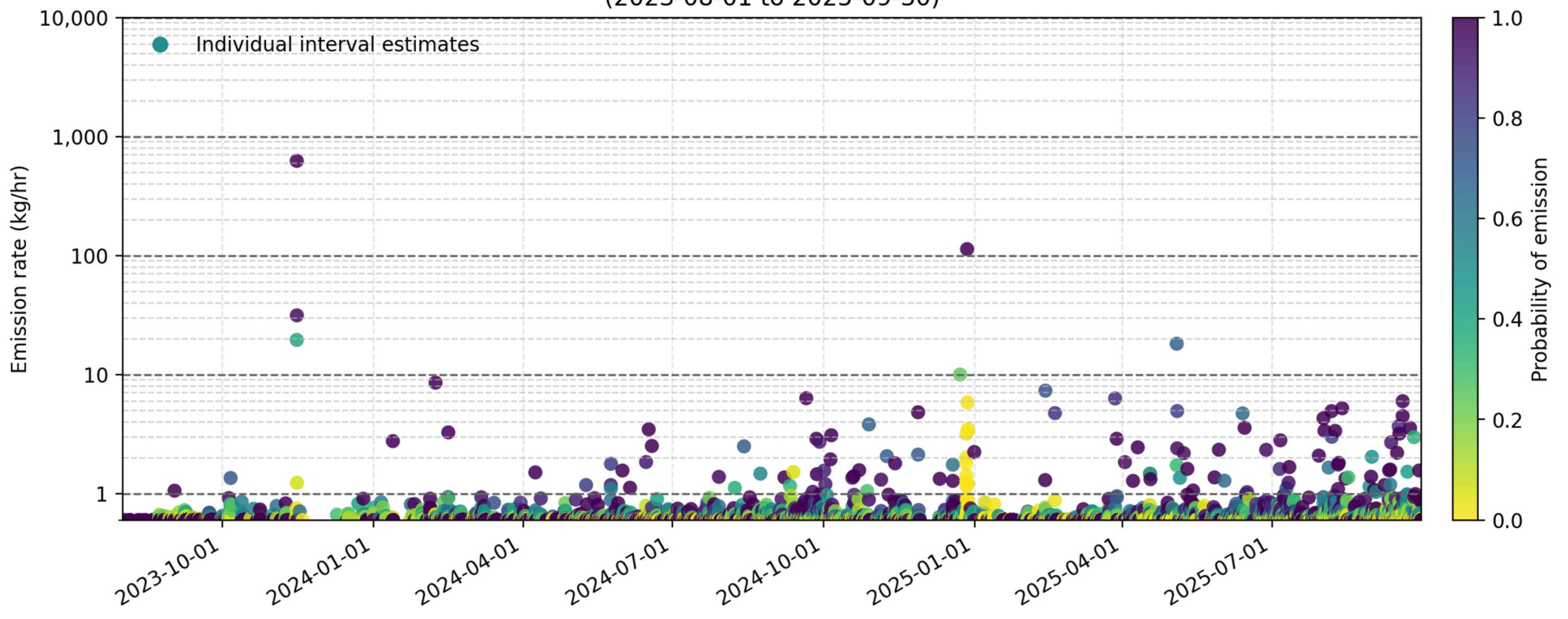
Site 25 - Estimated Dehydrator emission rates and probability-weighted daily average values (2025-09-01 to 2025-09-30)



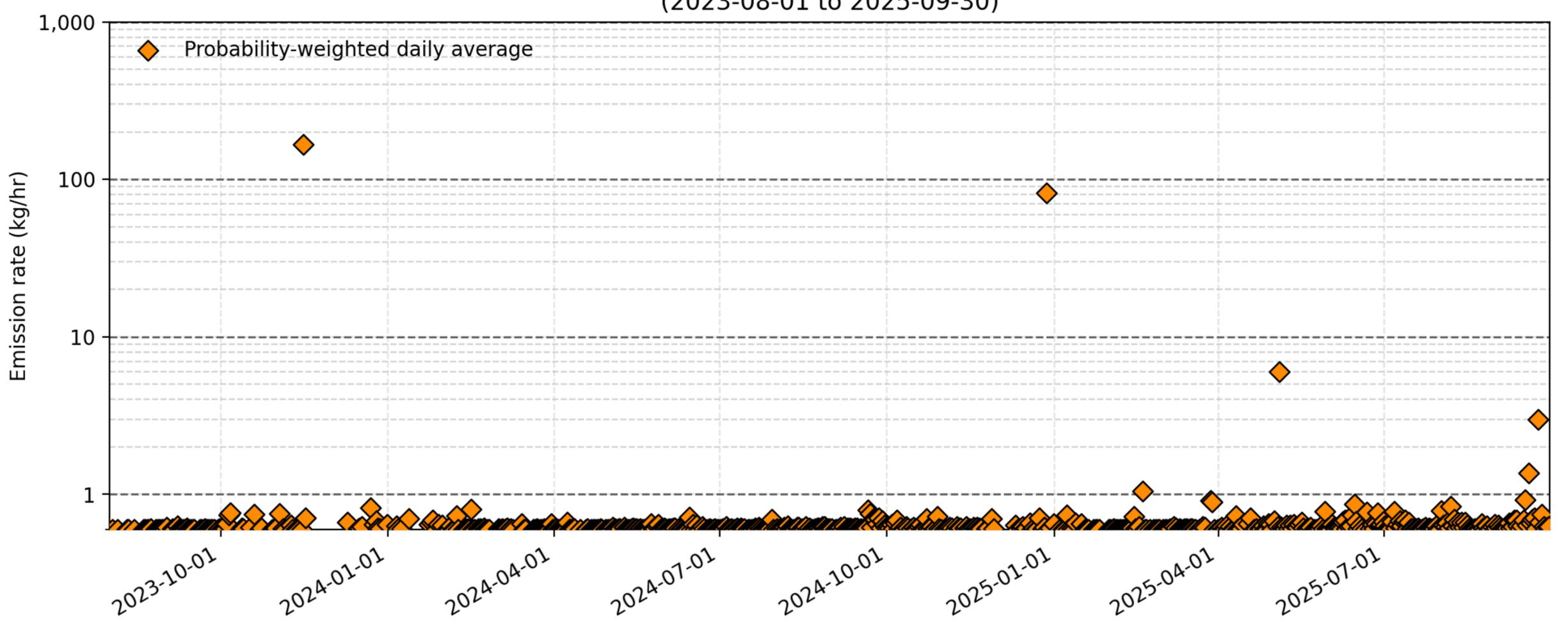


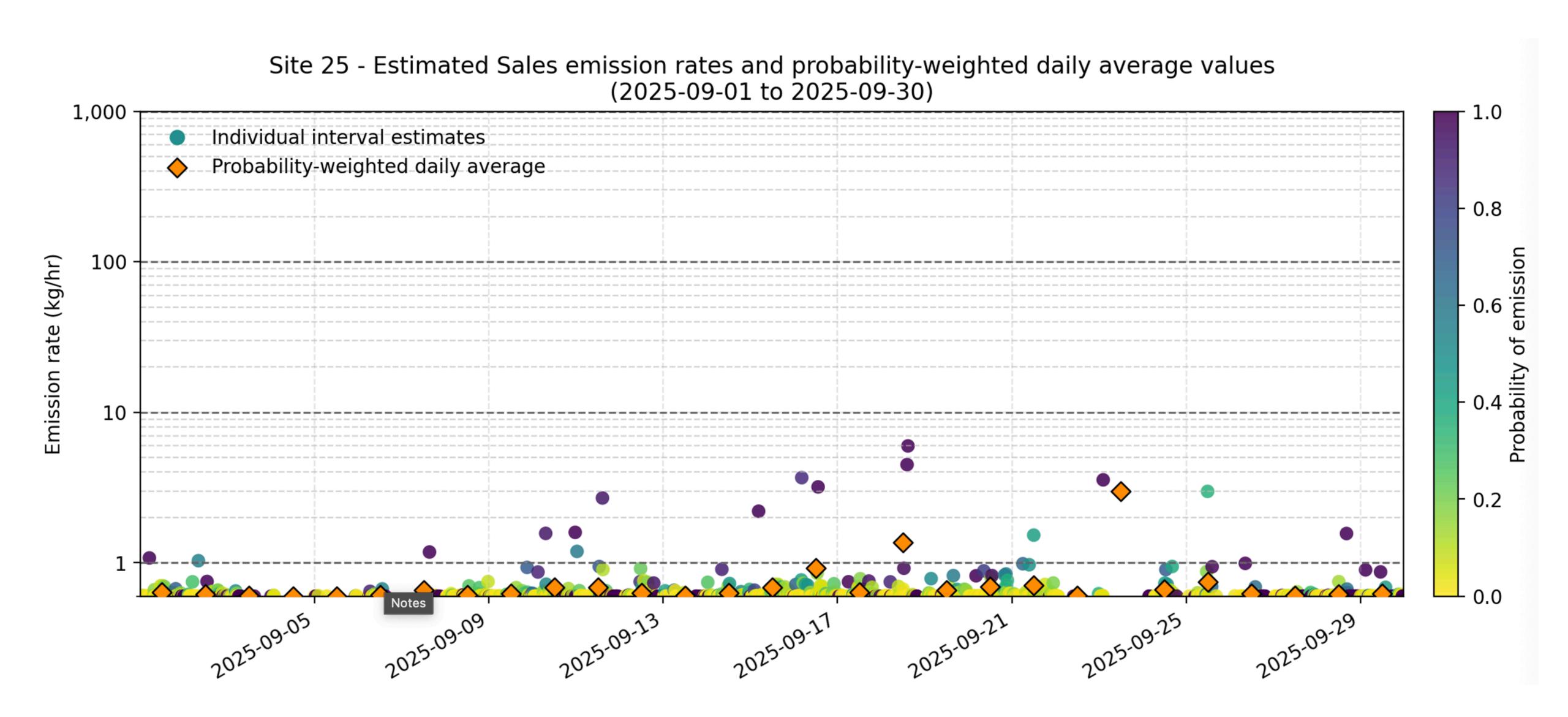


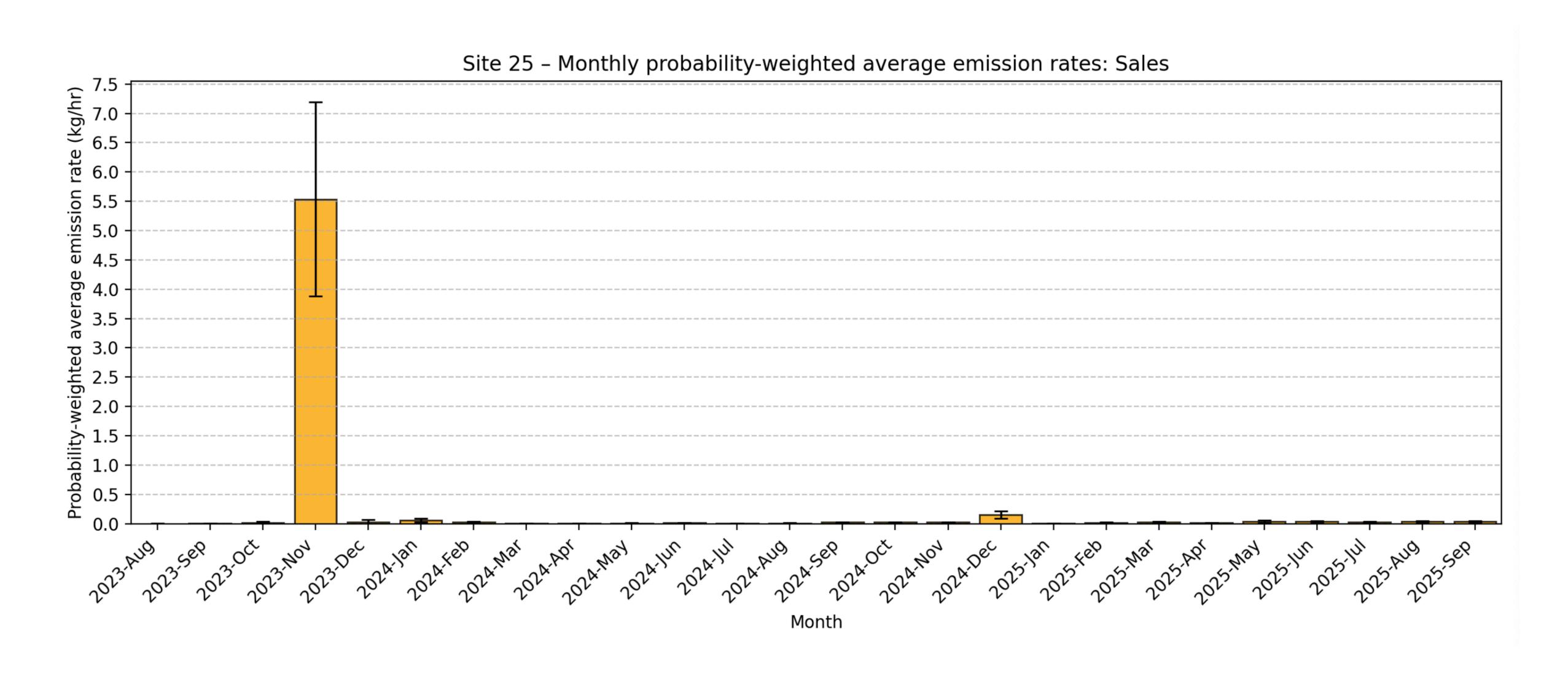


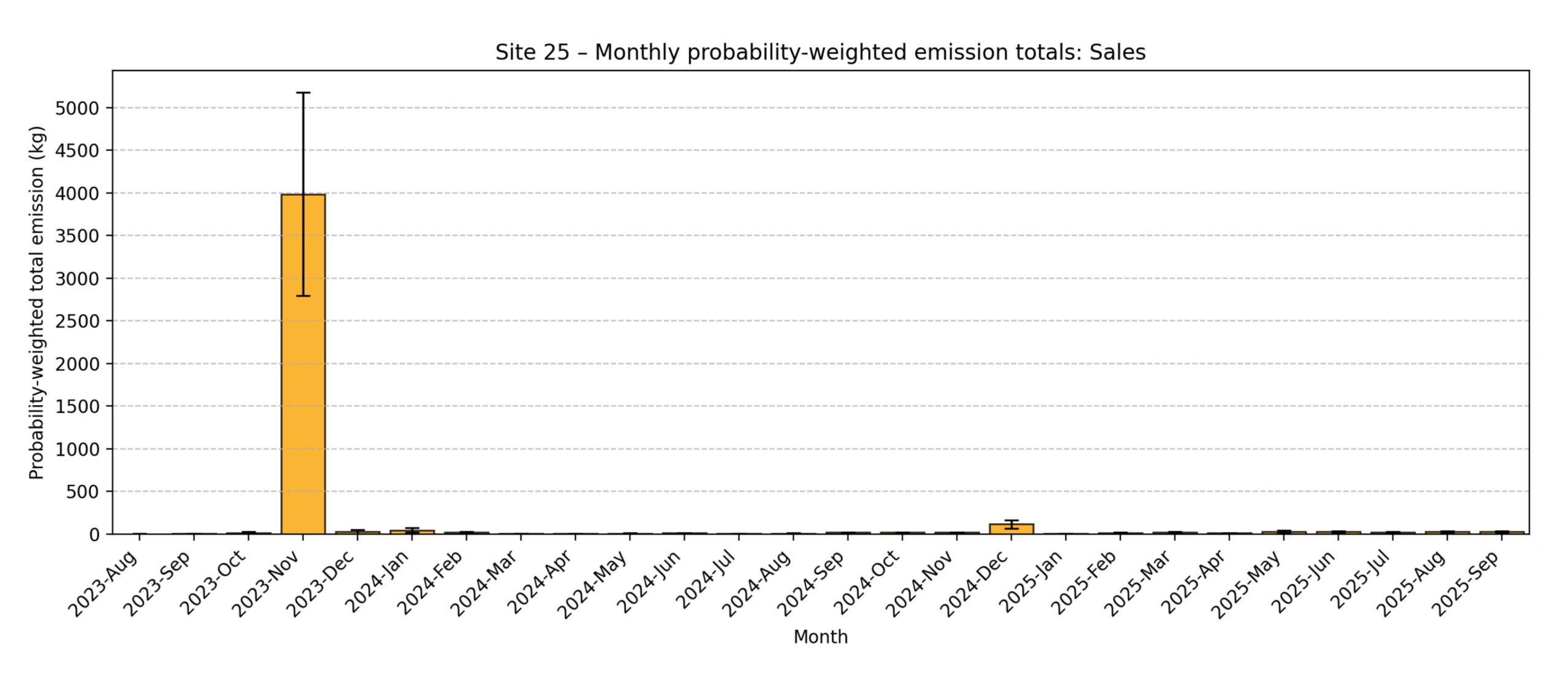


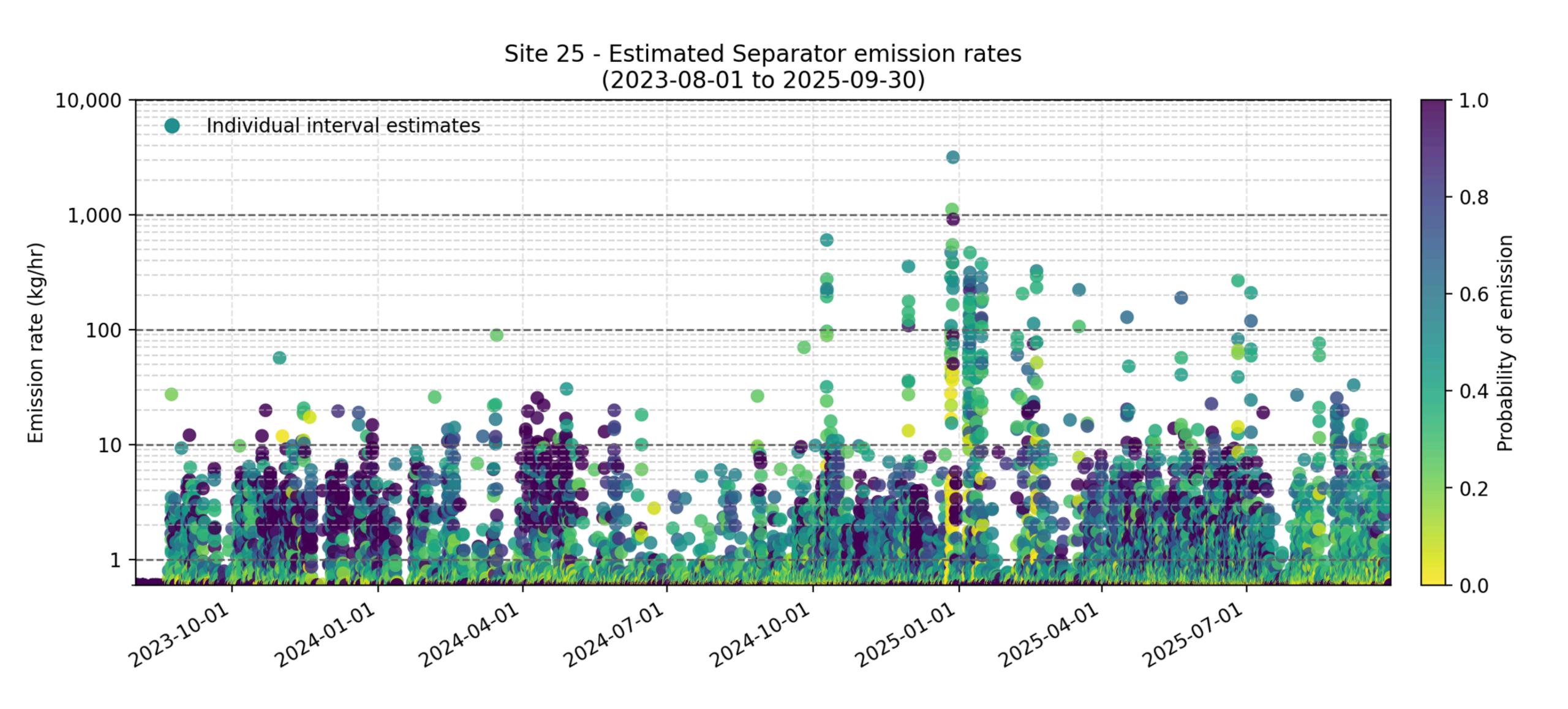
Site 25 - Estimated Sales probability-weighted daily average values (2023-08-01 to 2025-09-30)



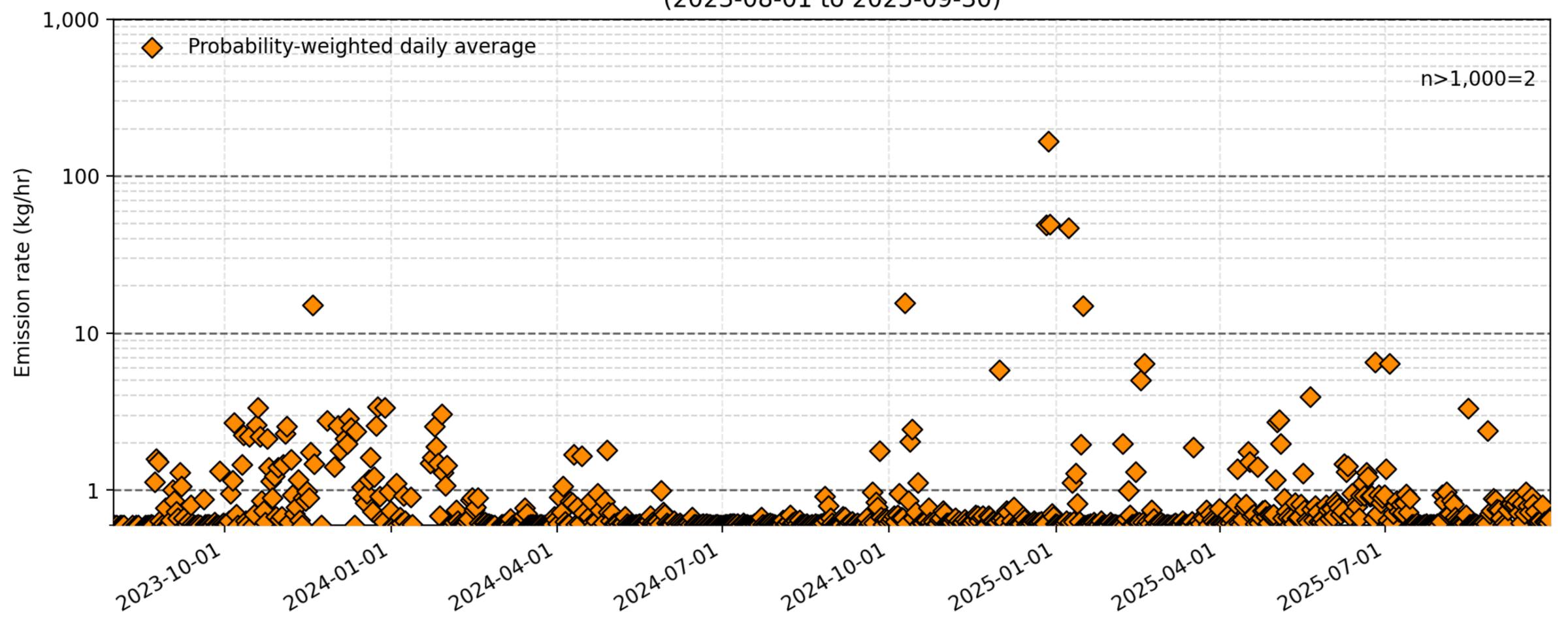


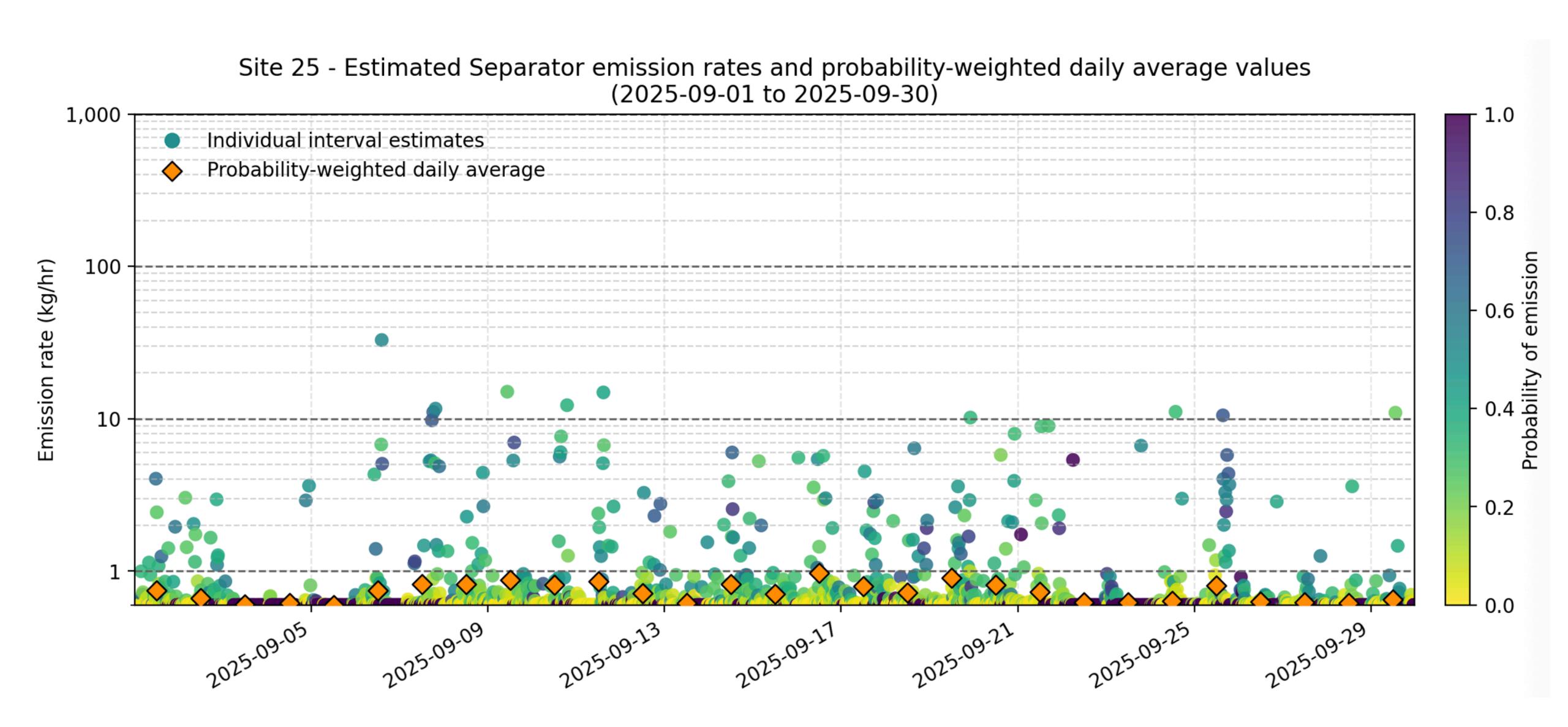


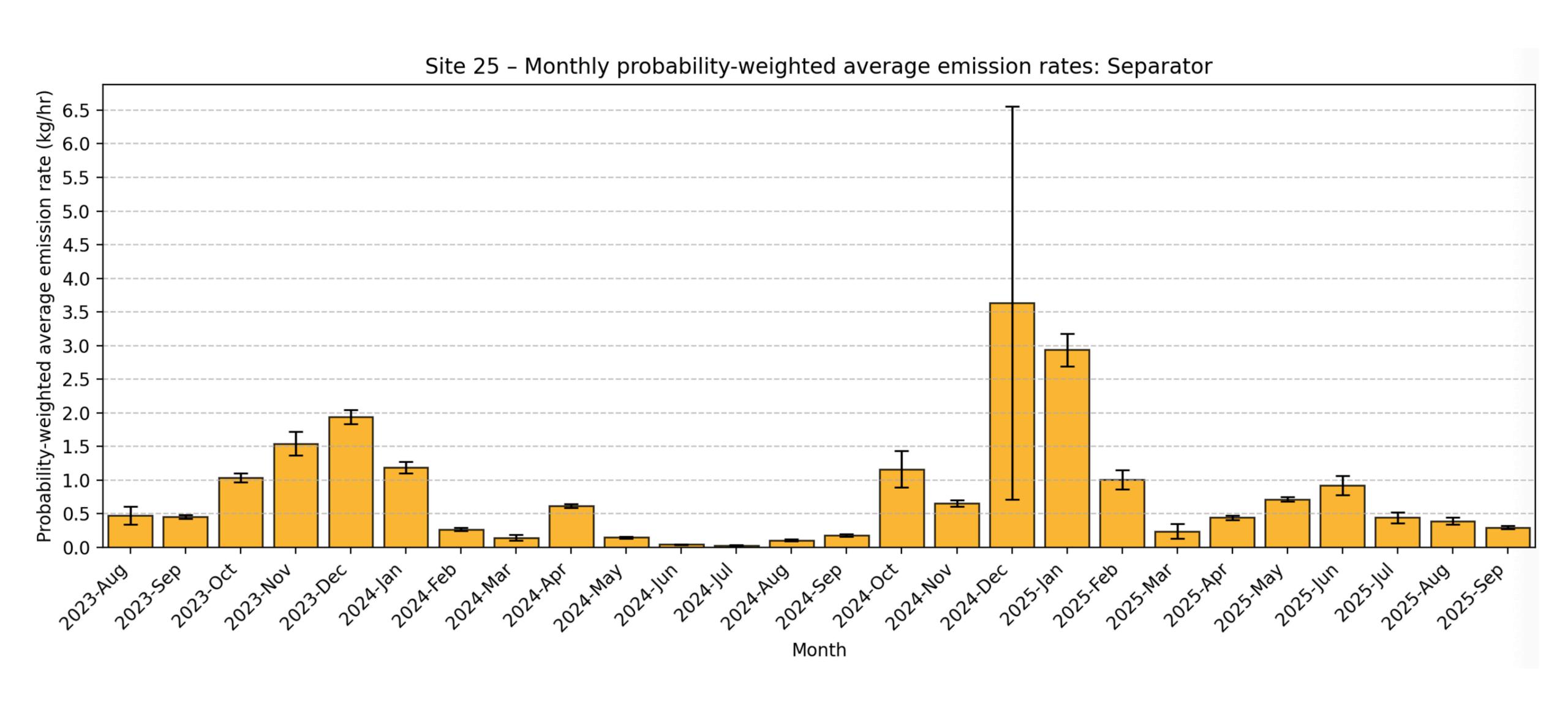


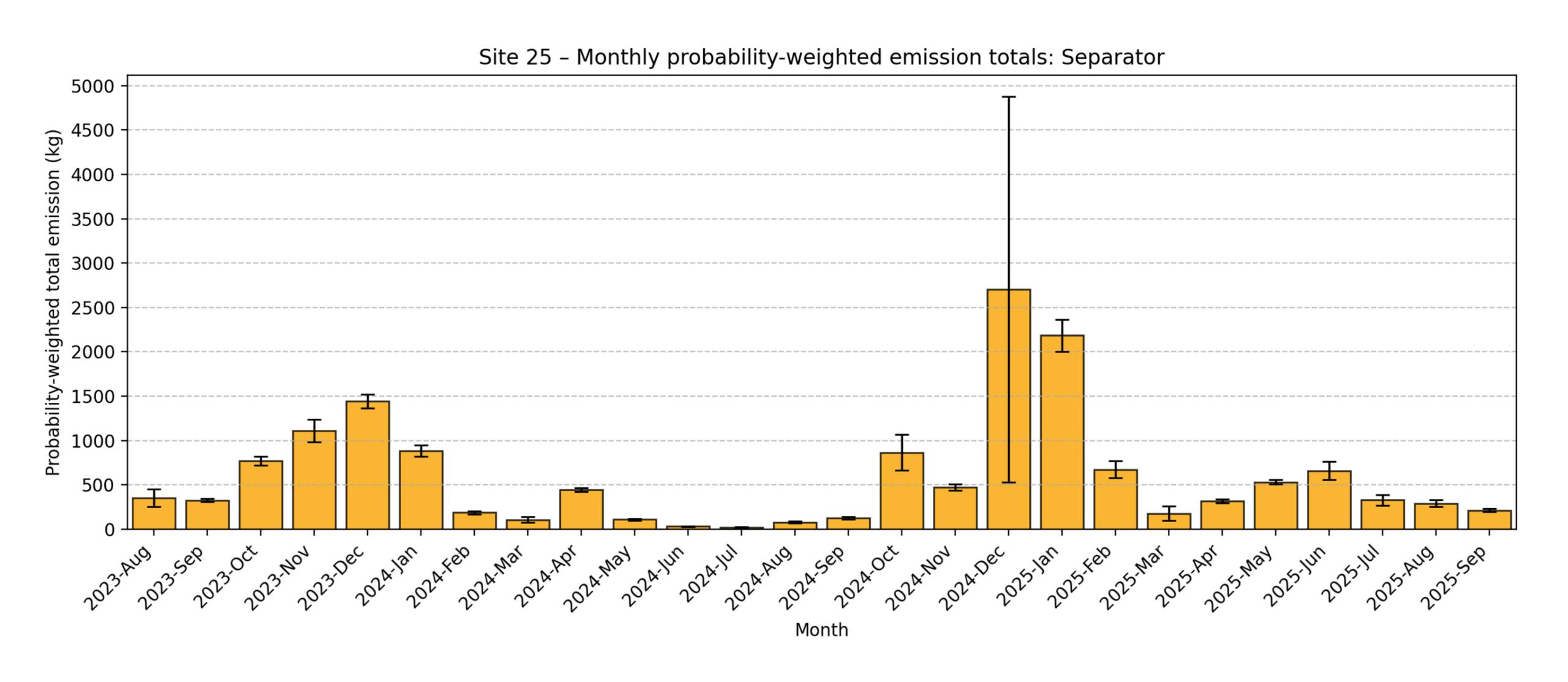


Site 25 - Estimated Separator probability-weighted daily average values (2023-08-01 to 2025-09-30)

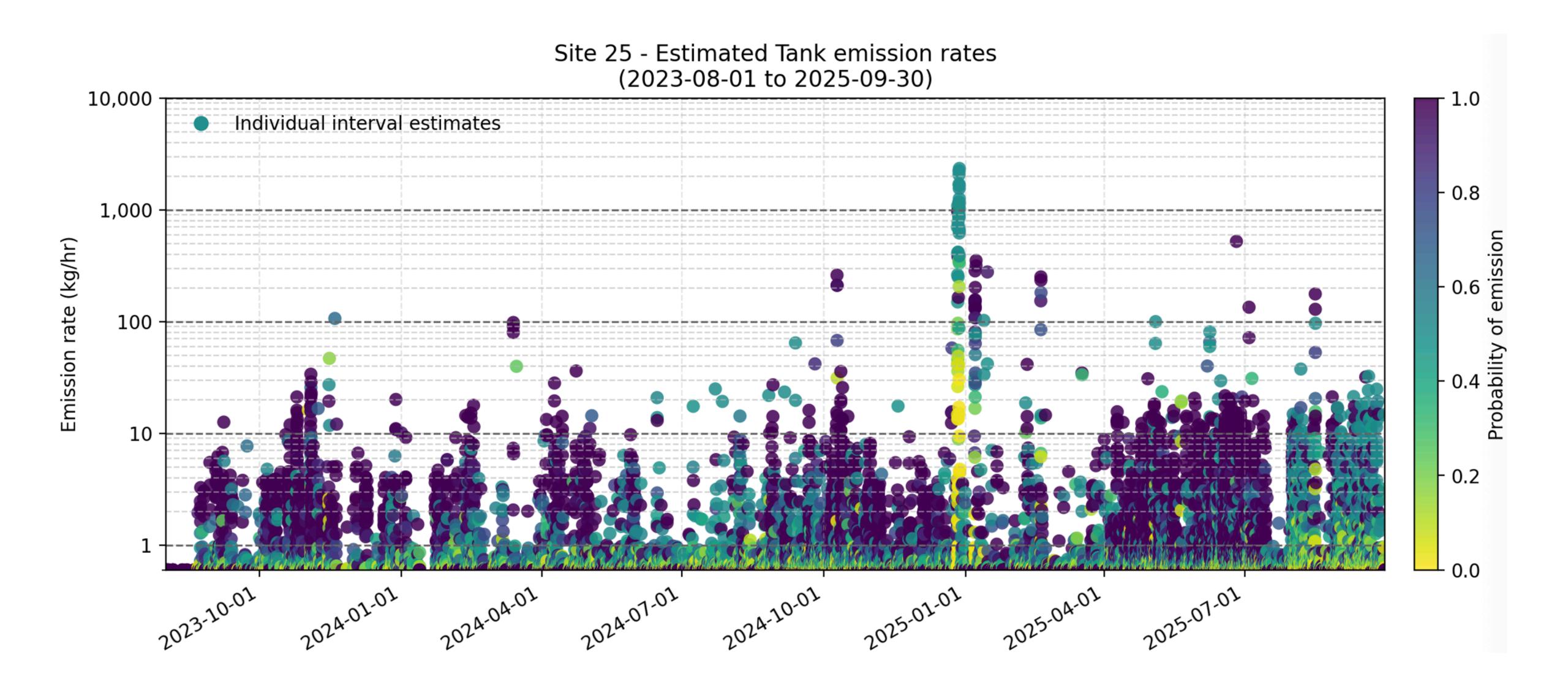




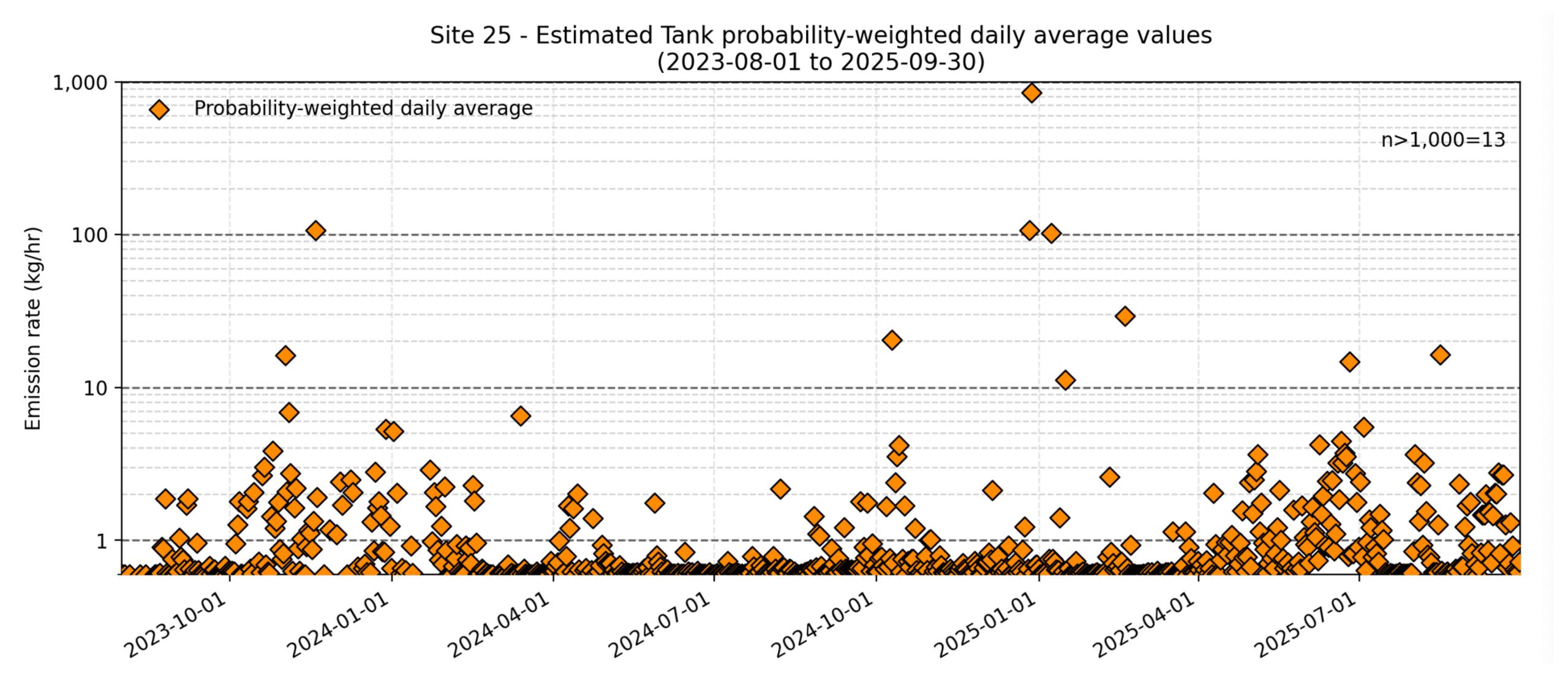




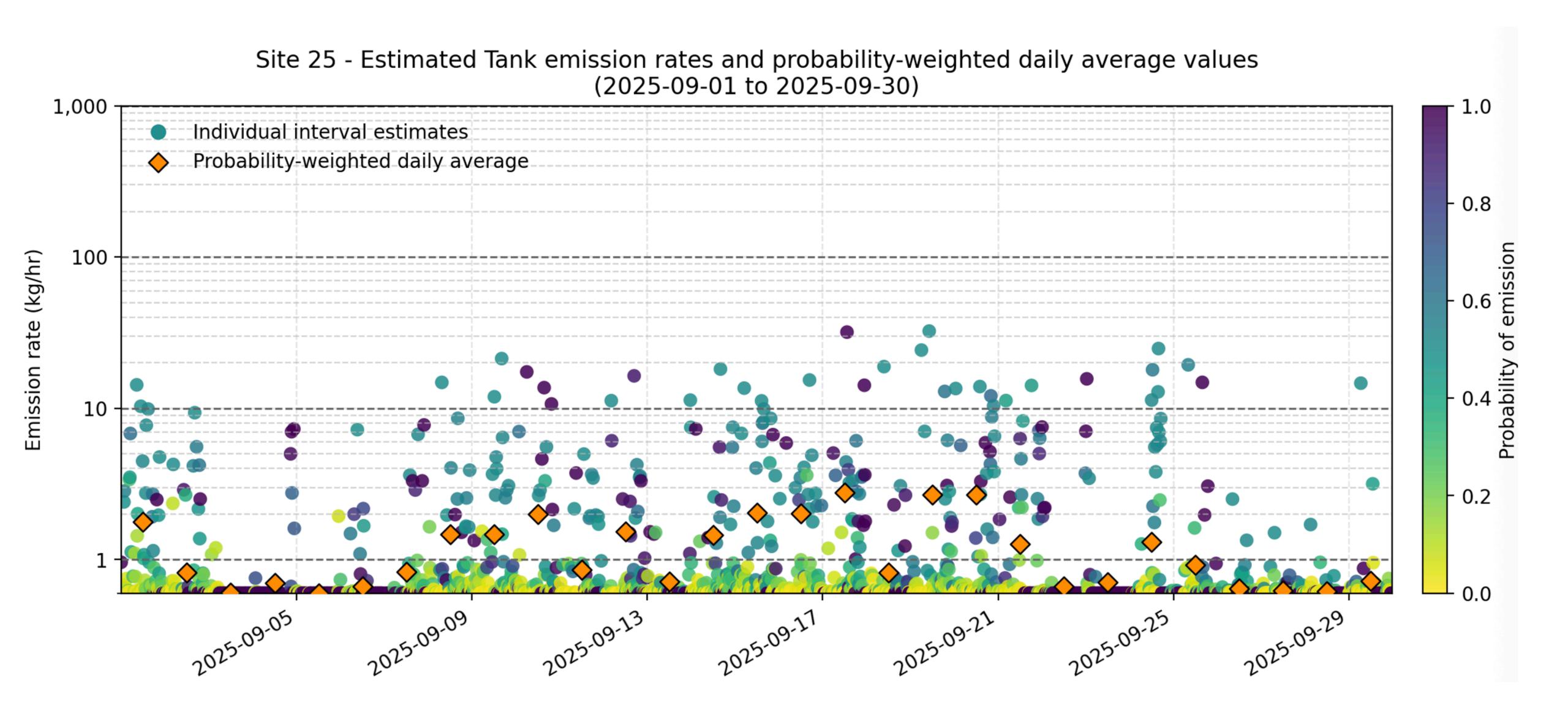
Tank emission rate estimates over time



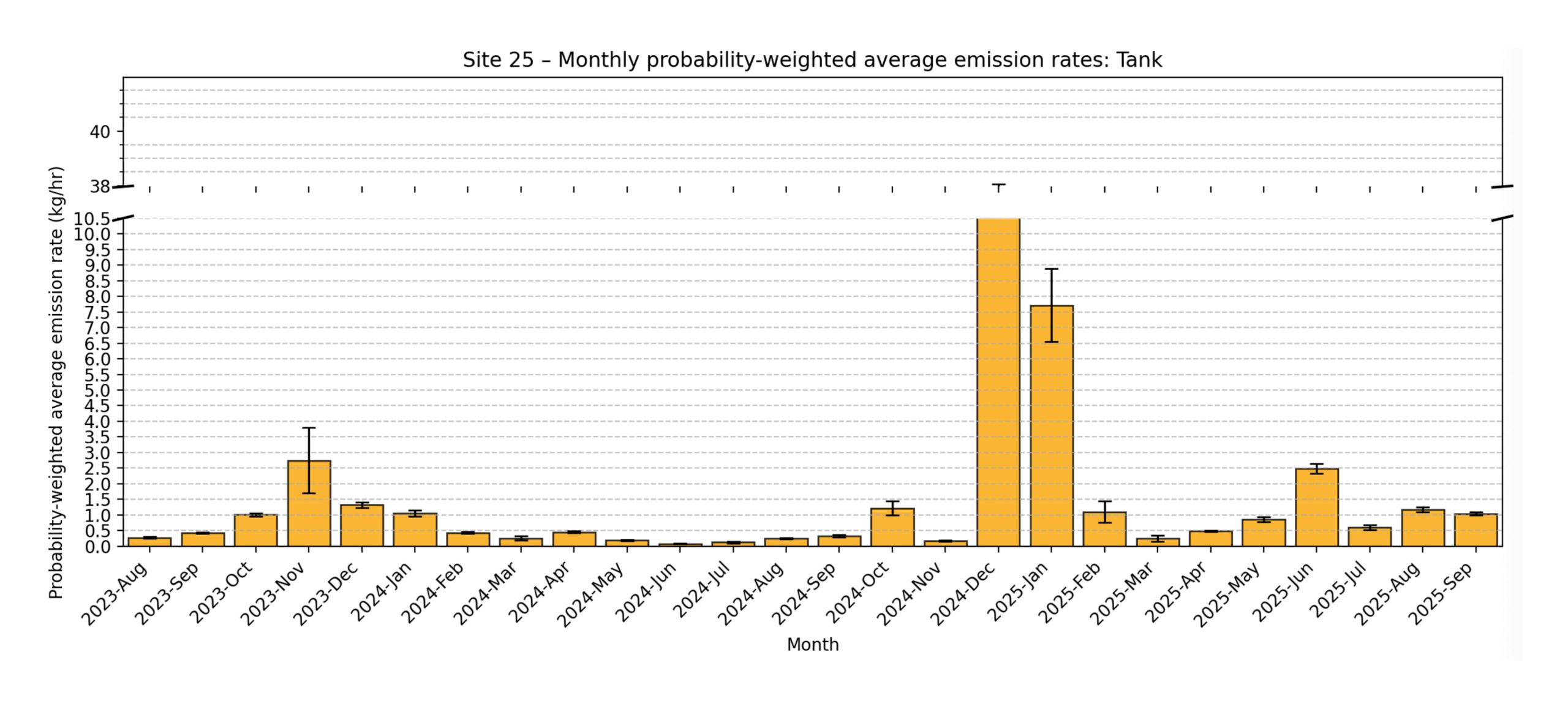
Tank emission rate estimates over time



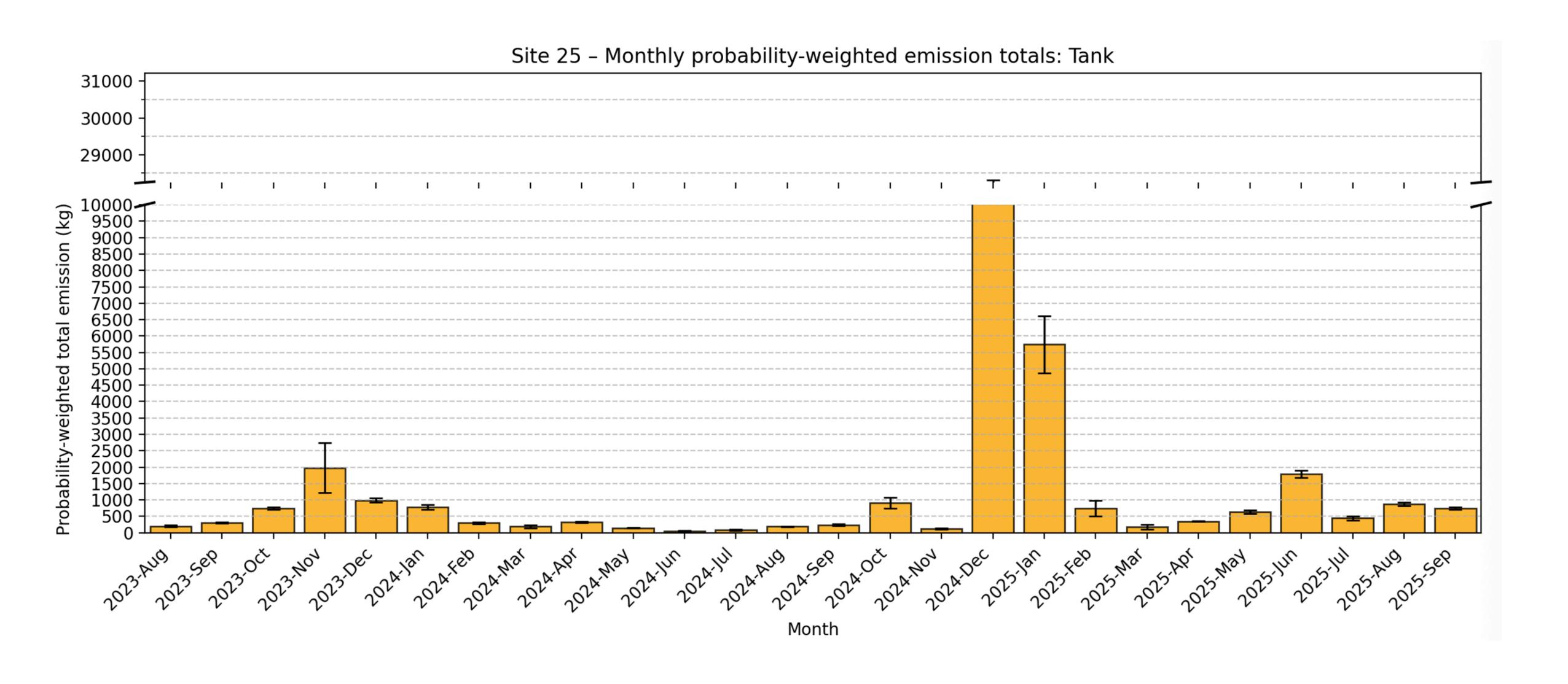
Tank emission rate estimates over time

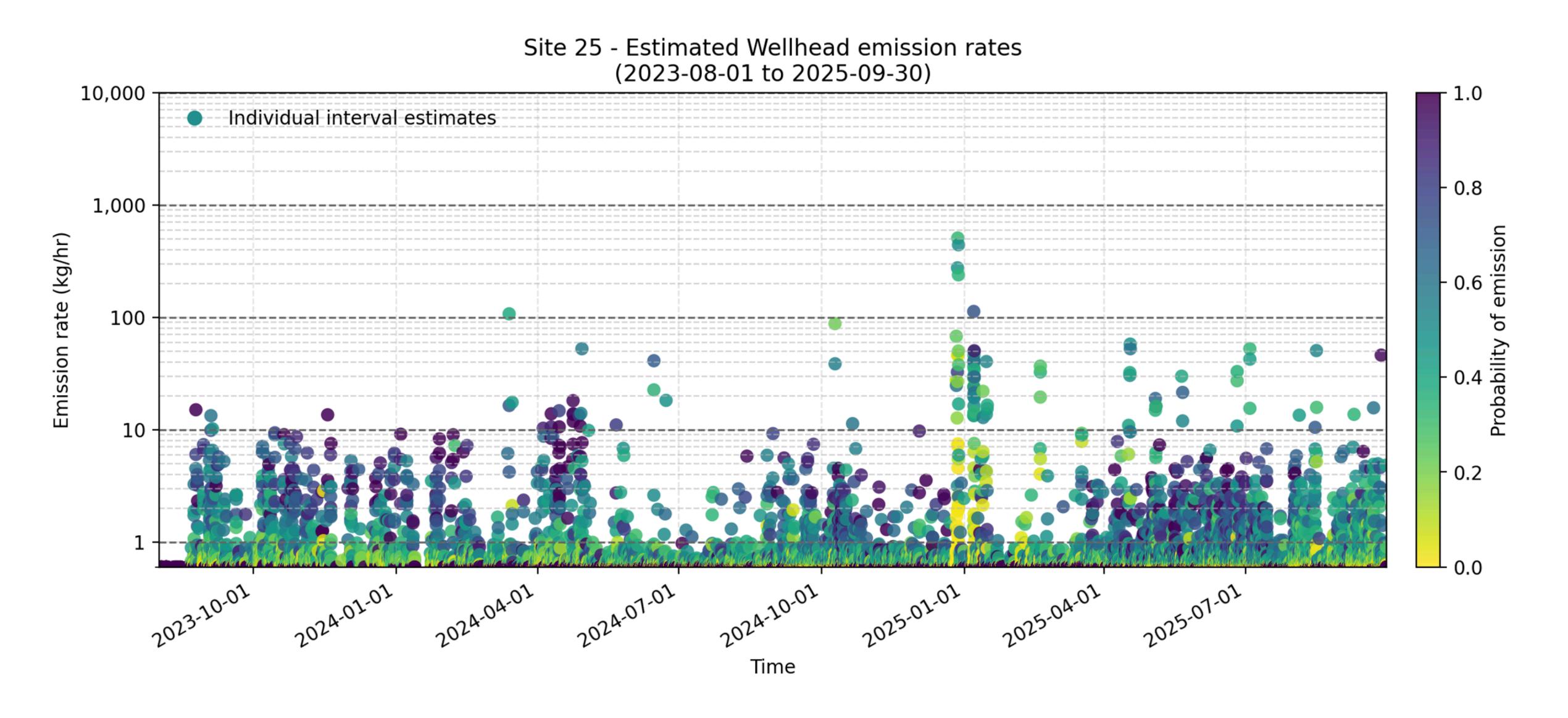


Tank emission rate estimates over time

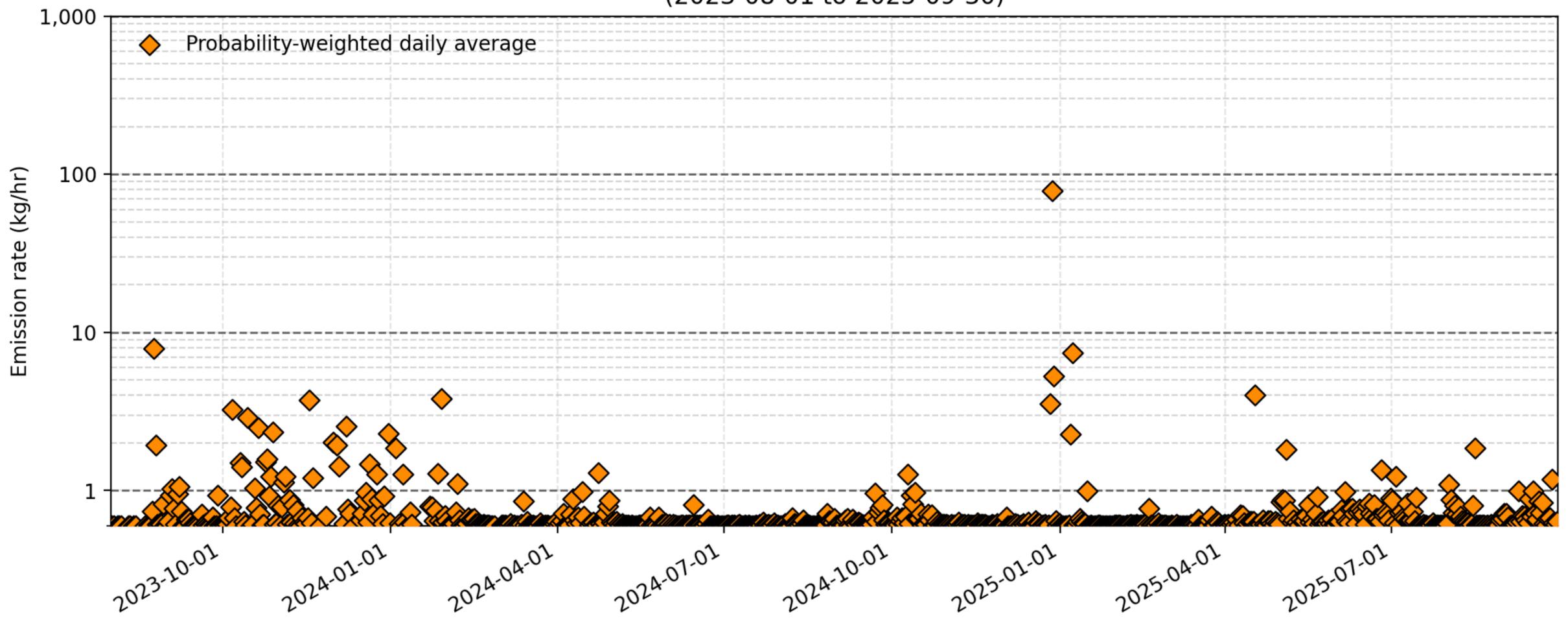


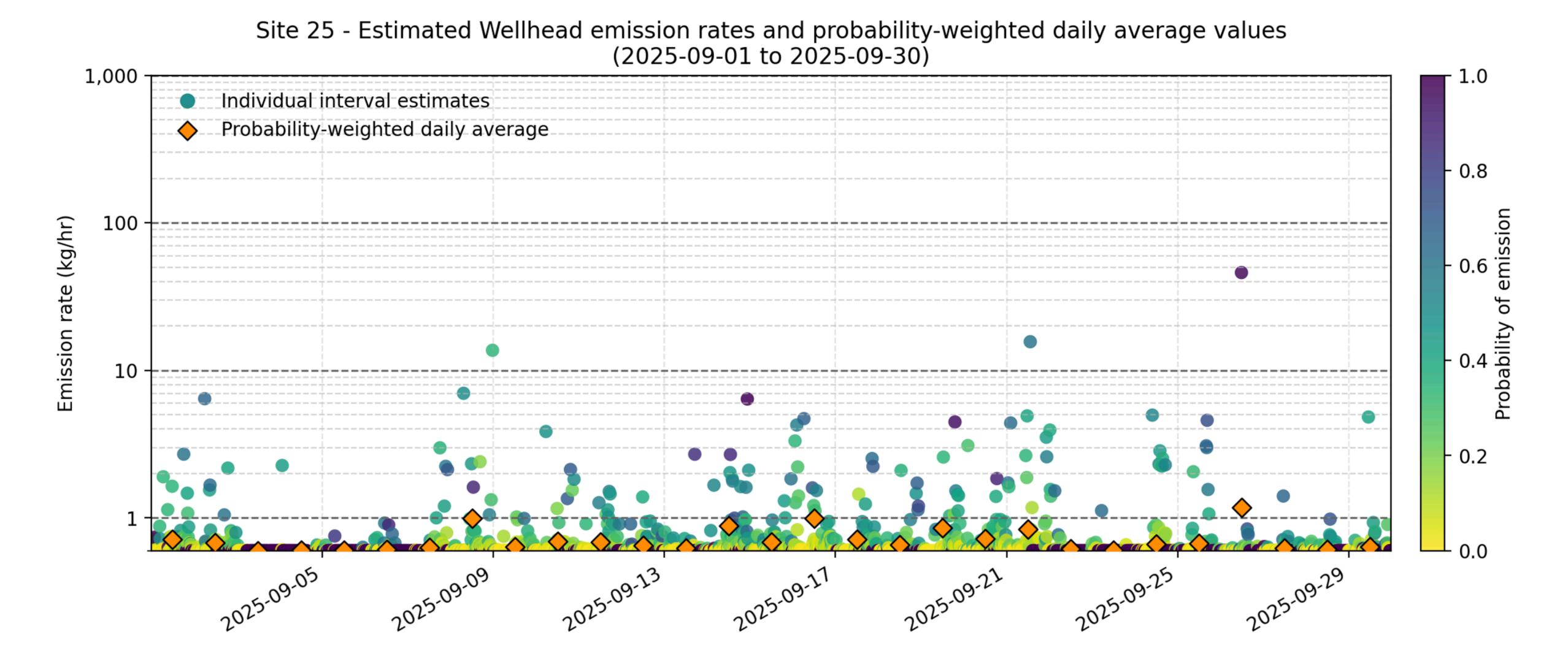
Tank emission rate estimates over time

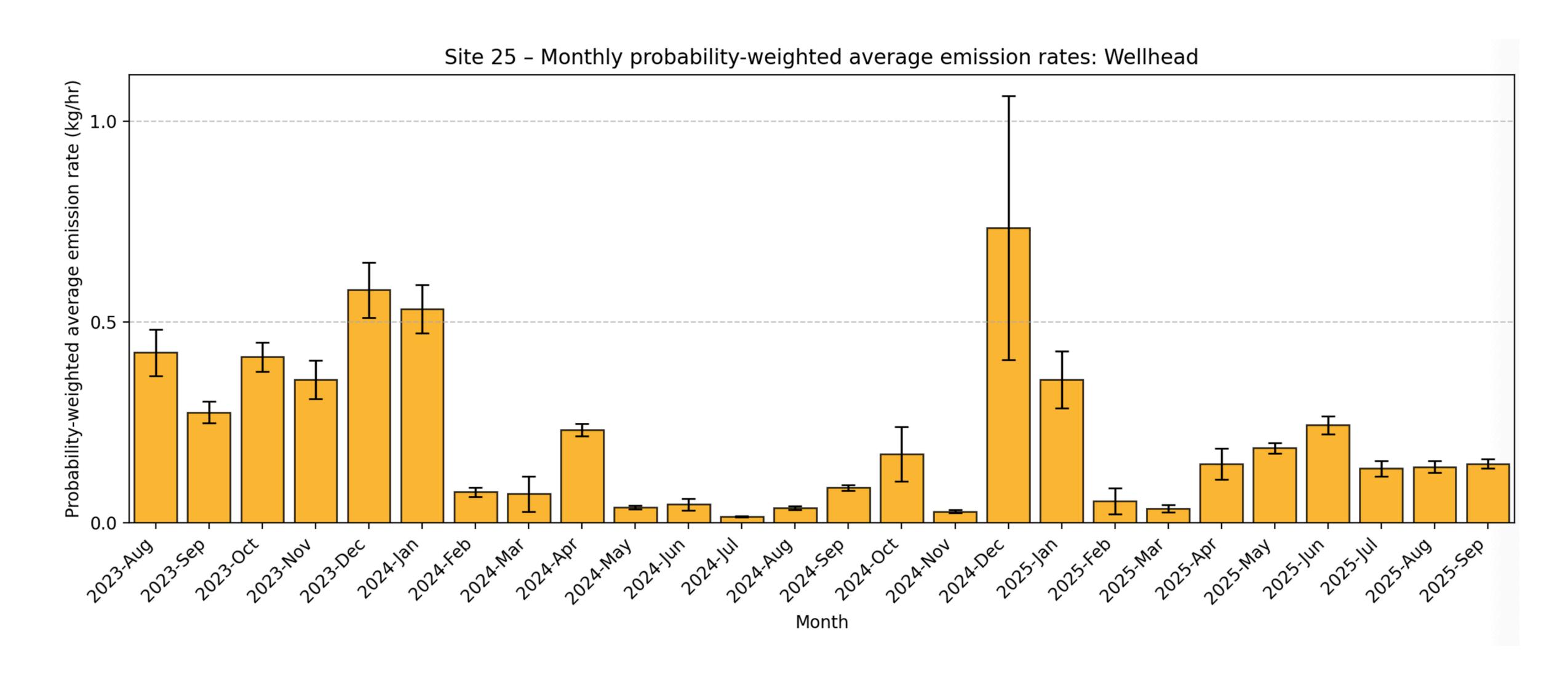


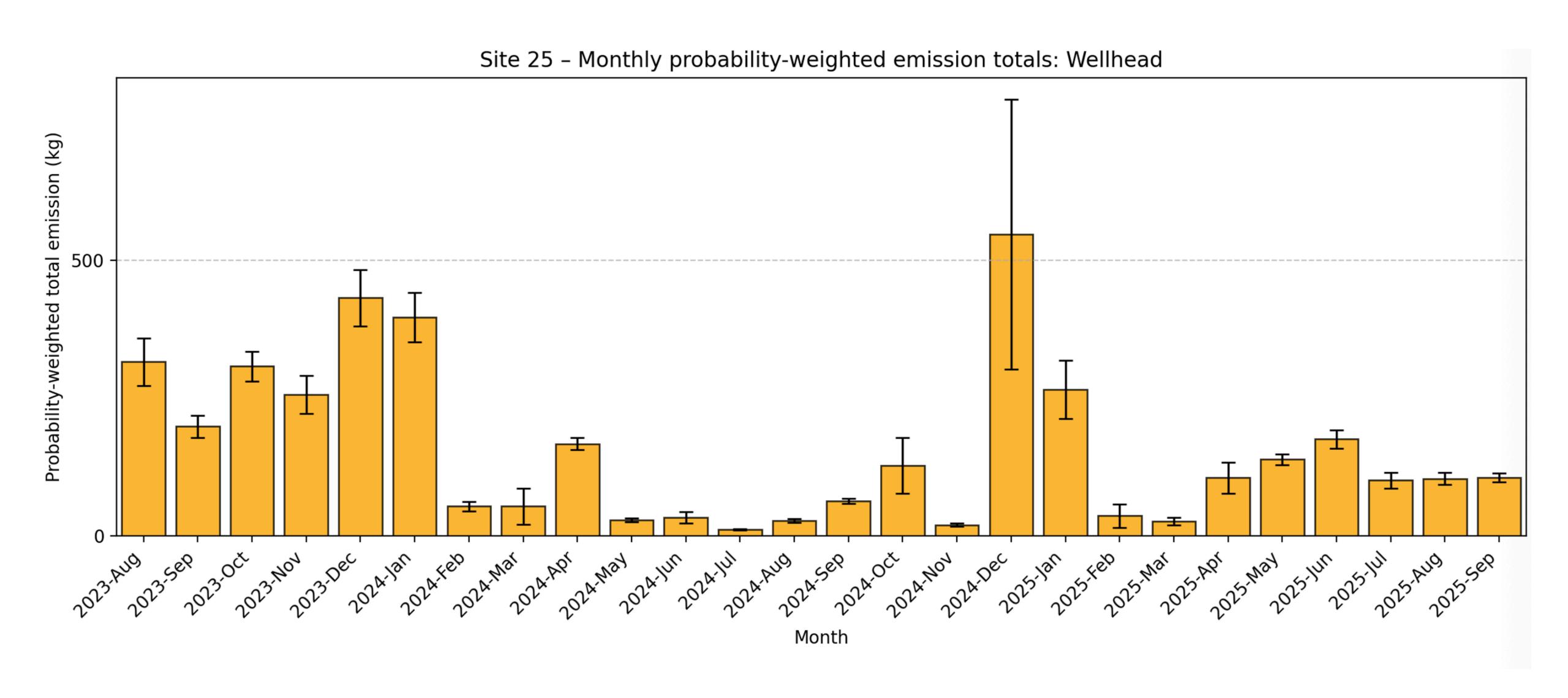


Site 25 - Estimated Wellhead probability-weighted daily average values (2023-08-01 to 2025-09-30)



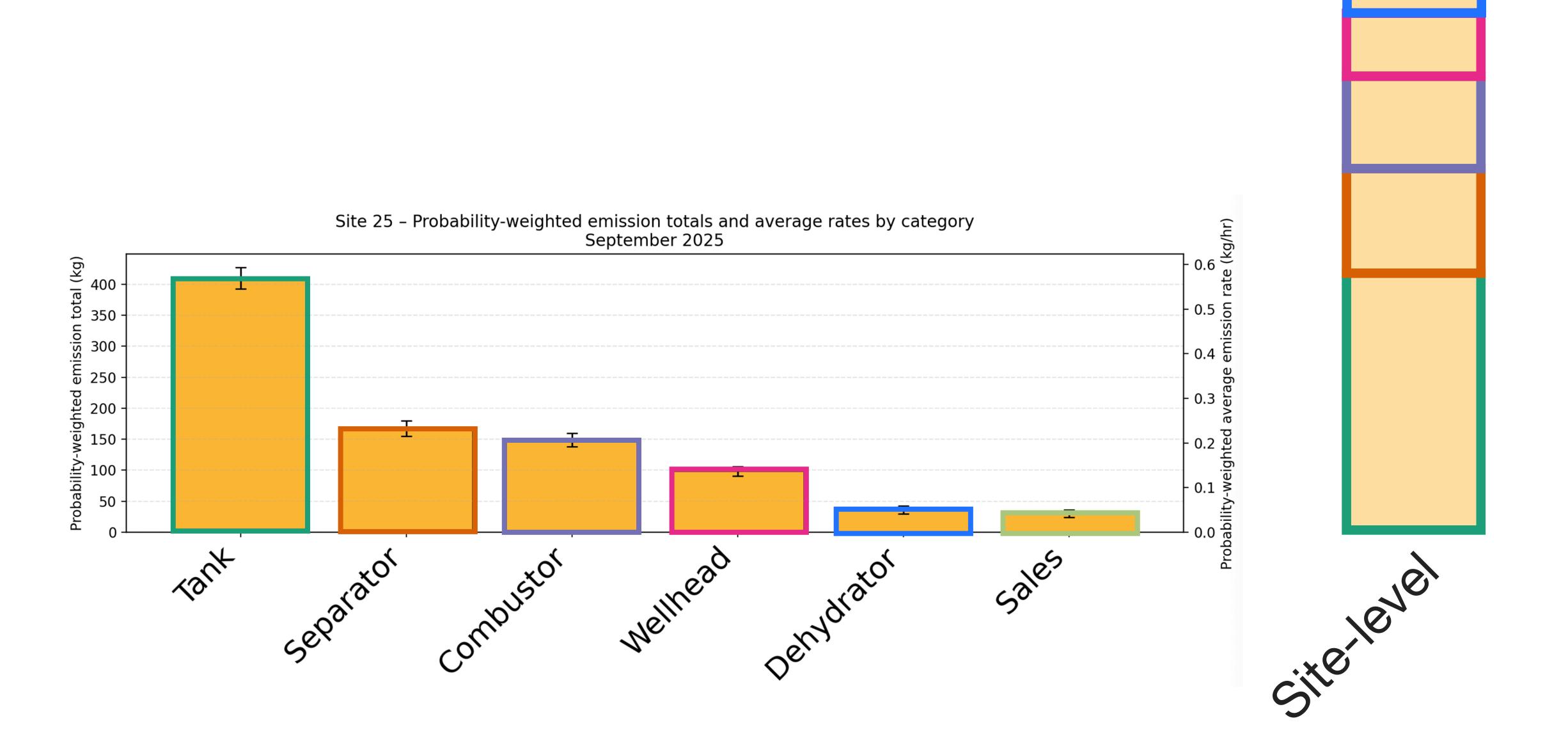




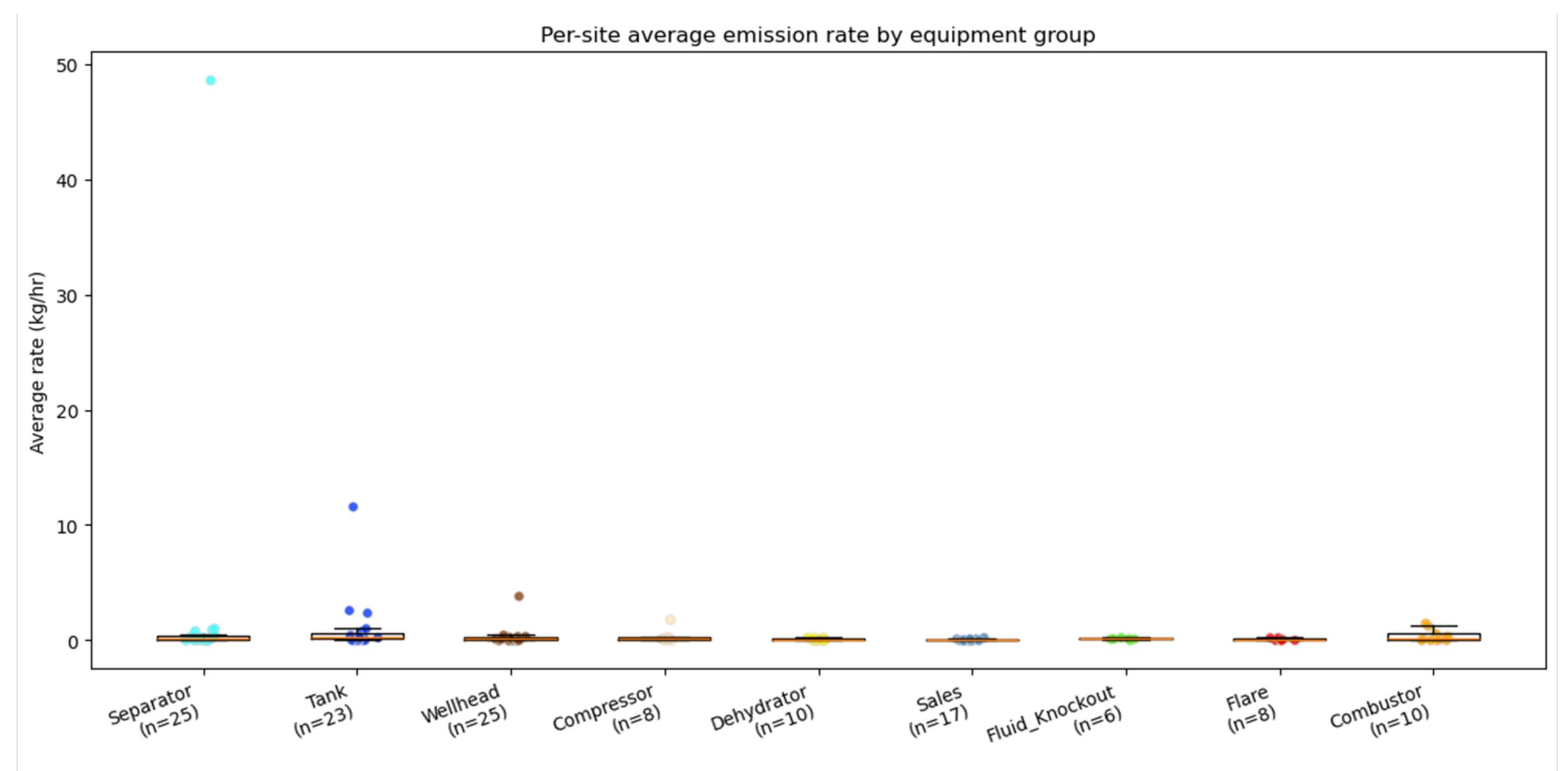


Site 25: September 2025 inventory

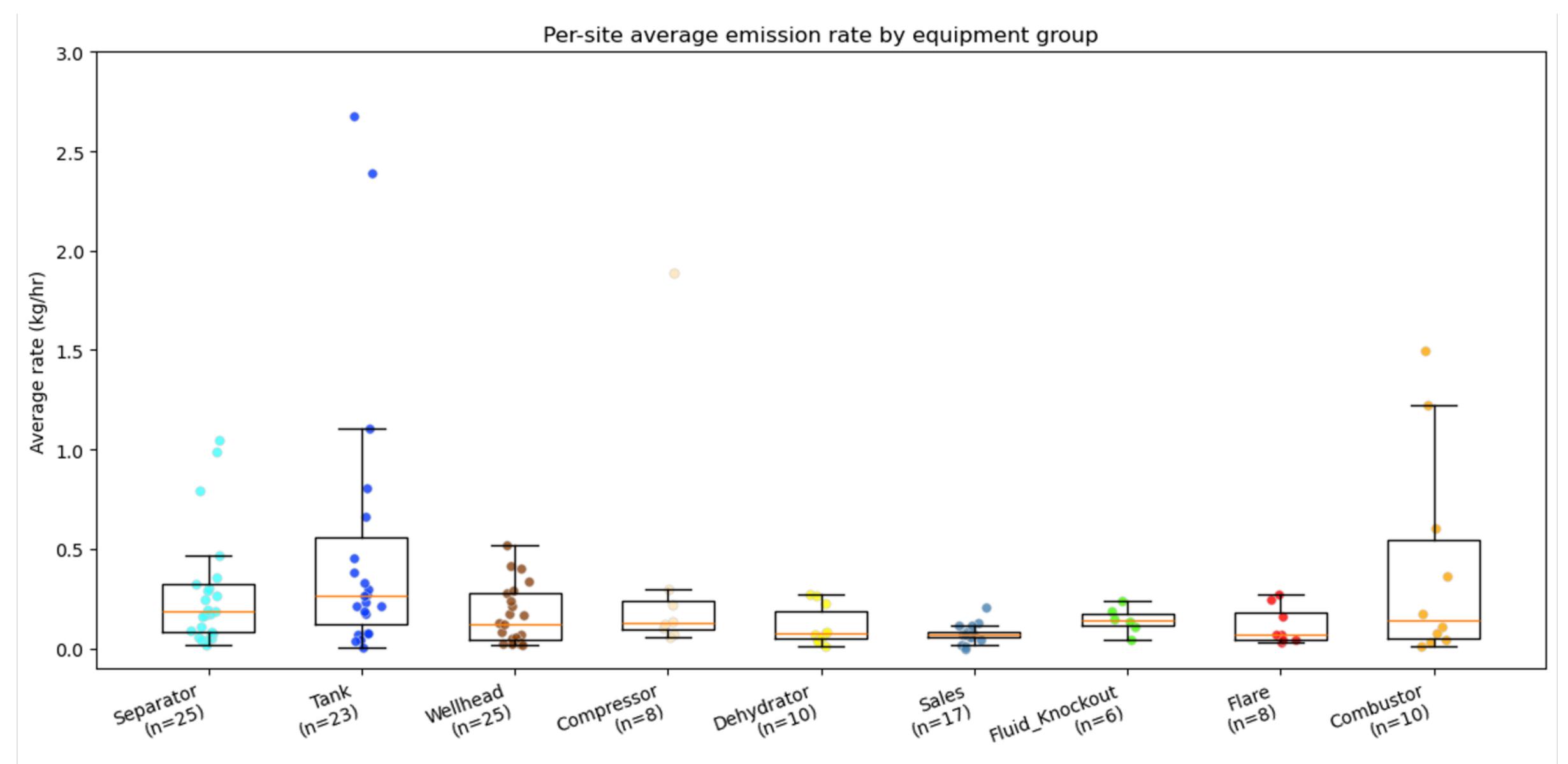
890 [830, 951] kg



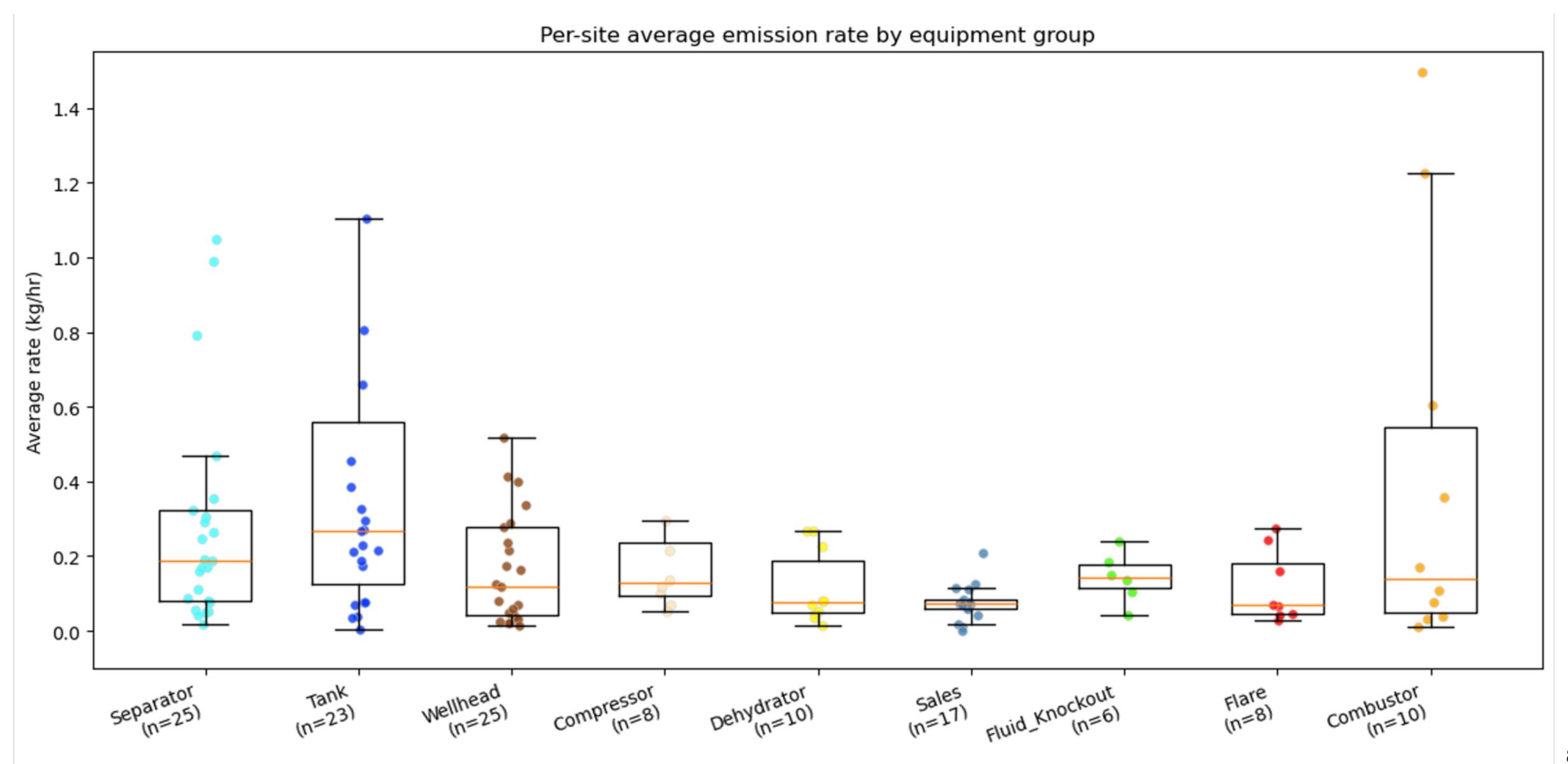
Summary across all 26 sites



Summary across all 26 sites



Summary across all 26 sites



Concluding thought:

- CMS provide enough measurements to create fully measurement-based inventories at the site-level... IF
 - You account for periods of no information
 - You have an unbiased inverse model (or know how to correct for the bias)
- There's a lot of information in the CMS-based emission rates, and we are just getting started analyzing it

Next steps:

- Compare to other inventory methods (UT MII, CSU MAES, GHGRP)
 - We have already done this on 5 sites for the COBE project in Colorado
- Use CMS-based emission rate estimates to inform "prototypical sites" or subsets of sites where distributions are similar
 - E.g. conventional wells

Thank you! Questions?

wdanie16@jhu.edu

