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Developing fully transparent, site-level, 
measurement-based inventories using 

continuous monitoring data

Inventory = sum (equivalent to mean) of emissions over a given time period

Measurement-based = only use measurement data to build the inventory

Site-level = only measurements from the specific site used to build the inventory

Fully transparent = all of the methods are open source!
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site-level & measurement-based
Site-level = only measurements from the specific site used to build the inventory

Measurement-based = only use measurement data to build the inventory
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Advantages 

• No assumptions about similar 
sites following similar 
distributions


• No potentially for 
underestimation to leak 
through from the inventory

Site-level = only measurements from the specific site used to build the inventory

Measurement-based = only use measurement data to build the inventory

site-level & measurement-based
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Advantages 

• No assumptions about similar 
sites following similar 
distributions


• No potentially for 
underestimation to leak 
through from the inventory

Challenges 

• Source estimate does not 
necessarily equal root cause


• Need a lot of measurements 
on each site


• Scaling up requires lots of 
measurements on lots of sites

site-level & measurement-based
Site-level = only measurements from the specific site used to build the inventory

Measurement-based = only use measurement data to build the inventory
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“Continuous” is rarely truly continuous
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Wind 
direction

“Continuous” is rarely truly continuous
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direction

“Continuous” is rarely truly continuous
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Wind 
direction

“Continuous” is rarely truly continuous



However… we can estimate when this happens!
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Downwind region does not overlap with CMS sensors 
= period of “no information”

Downwind region

Wind 
direction
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Downwind region

However… we can estimate when this happens!

Wind 
direction

Downwind region does overlap with CMS sensors 
= period of “information”
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Cluster 1 Cluster 2

How do periods of information and no information present 
themselves in the data?
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No 

information 

Information Information 
No 
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How do periods of information and no information present 
themselves in the data?
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

In practice, we estimate emissions on fixed fixed intervals
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Before building an inventory, we need to identify when an interval 
has no information,

Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

No info No info
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

0 kg/hr No info 0 kg/hr 0 kg/hr

Before building an inventory, we need to identify when an interval 
has no information, no emissions, or a non-zero emission

Estimate 
emissions No infoEstimate 

emissions
Estimate 
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

0 kg/hr No info 0 kg/hr 0 kg/hr

How do you get the inventory? We’re almost there…
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Multisource detection, localization, and quantification (MDLQ) model
Assume a multiple linear regression model at the data level

Concentration 
observations


from CMS sensors

Simulated concentrations 
from forward model, with 
each column assuming a 

different source

Emission rates for 
each source

n = number of observations

p = number of potential sources
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y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p



cp(x, y, z, t, Q) =
Q

(2π)3/2σ2
y σz

exp (−
(x − ut)2 + y2

2σ2
y ) [exp (−

(z − H)2

2σ2
z ) + exp (−

(z + H)2

2σ2
z )]

Predicted methane 
concentration at sensor 
location (x,y,z) and time t 

from puff p

Total volume of methane 
contained in puff p

Exponential decay in 
concentration in 

horizontal plane (x, y)

Exponential decay in 
concentration in 

vertical dimension (z)
32

Gaussian puff model: mathematical definition
Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with 
downwind vector
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Gaussian puff model: mathematical definition
Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with 
downwind vector

c(x, y, z, t, Q) =
P

∑
p=1

cp(x, y, z, t, Q)Total 
concentration 
at (x, y, z, t)
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Repeat this for all other potential sources!
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Multisource detection, localization, and quantification (MDLQ) model
Assume a multiple linear regression model at the data level

Concentration 
observations


from CMS sensors

Simulated concentrations 
from forward model, with 
each column assuming a 

different source

Emission rates for 
each source

n = number of observations

p = number of potential sources
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Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Multisource detection, localization, and quantification (MDLQ) model
n = number of observations

p = number of potential sources



Assume a multiple linear regression model at the data level

y = Xβ + ϵ
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

Gaussian

white noise

Autocorrelation 
coefficient

Multisource detection, localization, and quantification (MDLQ) model
n = number of observations

p = number of potential sources



Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

This gives us:  y ∼ N(Xβ, σ2R)

Multisource detection, localization, and quantification (MDLQ) model
n = number of observations

p = number of potential sources



y = Xβ + ϵ

“Slab” 
component is 
non-negative

Proportion of 
samples where 

 gives 
posterior 

probability that 
source  is 
emitting

zi = 1

i
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Spike-and-slab 
prior allows 

samples to be 
identically zero

ai, bi, ci, di 
can 

contain 
operator 
insight

The remainder of the hierarchy takes the following form

ϵ ∼ N(0,σ2R)
Data-level:

Multisource detection, localization, and quantification (MDLQ) model
n = number of observations

p = number of potential sources
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Multisource detection, localization, and quantification (MDLQ) model



Sampling from the posterior
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We can derive Gibbs updates for all parameters except . ν

Iterative samples from each 
full conditional gives you 
samples from the joint 

posterior!



Model evaluation on multi-source controlled release data
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337 controlled releases:

• 99 (29%) single-source

• 238 (71%) multi-source

Emission rates range from 
0.08 to 7.2 kg/hr

Emission durations range from 
0.5 to 8 hours

Methane Emissions Technology Evaluation Center (METEC)



Model evaluation on multi-source controlled release data
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Model evaluation on multi-source controlled release data
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

q1 = 0 
kg/hr

q2 = 4.5 
kg/hr

q3 = 4.7 
kg/hr

q4 = no 
info

q5 = 5.3 
kg/hr

q6 = no 
info

q7 = 0 
kg/hr

q8 = 0 
kg/hr

p2 = 0.78 p3 = 0.82 p3 = 0.64

Need to identify when an interval is no information, no emissions, 
or a non-zero emission



47

Measurement-based inventory results for the Appalachian 
Methane Initiative (AMI)

• We have data from 26 production sites 
- All are equipped with high-end continuous monitoring point sensors

- Number of sensors per site varies from 3 to 7


• 57.82 total years of data 
- Average of 2.22 years per site
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Example: Site 25

August 2023 to 
October 2025

September 2025
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Ratio of no information to information August 2023 
to


October 2025

No info
0 kg/hr

Nonzero

emissions
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Ratio of no information to information September 
2025

No info
0 kg/hr

Nonzero

emissions
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Combustor emission rate estimates over time
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Combustor emission rate estimates over time
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Combustor emission rate estimates over time
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Combustor emission rate estimates over time
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Combustor emission rate estimates over time
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Dehydrator emission rate estimates over time
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Dehydrator emission rate estimates over time
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Dehydrator emission rate estimates over time
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Dehydrator emission rate estimates over time
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Dehydrator emission rate estimates over time
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Sales line emission rate estimates over time
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Sales line emission rate estimates over time
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Sales line emission rate estimates over time
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Separator emission rate estimates over time
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Separator emission rate estimates over time
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Separator emission rate estimates over time
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Tank emission rate estimates over time
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Tank emission rate estimates over time
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Tank emission rate estimates over time
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Tank emission rate estimates over time
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Tank emission rate estimates over time
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Wellhead emission rate estimates over time
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Wellhead emission rate estimates over time
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Wellhead emission rate estimates over time
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Wellhead emission rate estimates over time
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Wellhead emission rate estimates over time
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Site 25: September 2025 inventory

Site
-le

ve
l

890 [830, 951] kg
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Summary across all 26 sites
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Summary across all 26 sites
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Summary across all 26 sites
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Concluding thought: 
• CMS provide enough measurements to create fully measurement-based 

inventories at the site-level… IF

- You account for periods of no information

- You have an unbiased inverse model (or know how to correct for the bias)


• There’s a lot of information in the CMS-based emission rates, and we are 
just getting started analyzing it


Next steps: 
• Compare to other inventory methods (UT MII, CSU MAES, GHGRP)


- We have already done this on 5 sites for the COBE project in Colorado

• Use CMS-based emission rate estimates to inform “prototypical sites” or 

subsets of sites where distributions are similar

- E.g. conventional wells



Thank you! Questions? 

wdanie16@jhu.edu 


