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Example production oll and gas site
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Example production oil and gas site Continuous monitoring
system (CMS)
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Example production oil and gas site Continuous monitoring
system (CMS)
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Example production oll and gas site
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Example production oll and gas site
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Example production oll and gas site
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Event detection:
When is an emission happening?

Tank#

e e i e | Localization:

—_— o e Where is the emission coming from?
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Quantification:

How much is being emitted?
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The single-source continuous monitoring inverse problem
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Concentration [ppm]
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remc?val » Simulation » Localization »
and event detection

STEP 4:
Quantification
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Methane Concentration [ppm]
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Methane [ppm]

Spike detection algorithm examples
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Methane Concentration [ppm]
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Maximum across sensors
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remqval » Simulation » Localization »
and event detection

STEP 4:
Quantification
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Gaussian plume model:
models the transport of methane by assuming that everything is steady state

Wind

direction =
[I.El CMS sensor

» Tank @E)D)

21



Gaussian plume model:
models the transport of methane by assuming that everything is steady state
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Gaussian plume model:
models the transport of methane by assuming that everything is steady state
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:
approximates a continuous release of methane as a sum of many small “puffs”
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The Gaussian puff can leverage high frequency wind data,
while the Gaussian plume requires a temporal average.
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Gaussian plume model: mathematical definition

Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with
downwind vector

Exponential decay as you move
away from the downwind vector
Emission rate In the vertical dimension

\ AN

c(x,y,7) = ¢ ex _y2 ex _(z—H)2 + ex —(Z+H)2
Re 2nuo,o, P 207 P 20? P 20?7

Predicted methane Exponential decay as
concentration at you move away from the
sensor location (x,V,2) downwind vector in the

horizontal plane
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Gaussian puff model: mathematical definition

Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with
downwind vector

Total volume of methane
contained in puff p

\

c.(x,y,z2,t,0) = 2 ex _(x—ut)2+y2 ex _(Z—H)2 +ex _(Z+H)2
p PARCRL (Zﬂ)3/26y2 o, p 7 52 p 7652 P 52

Y Z Z
Predicted methane Exponential decay In Exponential decay In
concentration at sensor concentration in concentration in
location (x,y,z) and time t horizontal plane (x, y) vertical dimension ()

from puff p
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Gaussian puff model: mathematical definition

Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with
downwind vector

P

Total c(x,y,2,t,0) = c,(x,y,2,t, Q)
concentration — Z g

Total volume of methane p=1
contained in puff p ’

\

c.(X,y,2,t,0) = J ex _(X—ut)2+y2 ox _(Z—H)2 L ex _(Z+H)2
N A A Rl =

Predicted methane Exponential decay In Exponential decay In
concentration at sensor concentration in concentration in
location (x,y,z) and time t horizontal plane (x, y) vertical dimension ()

from puff p
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Simulated Methane Concentration [ppm]
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Repeat this for all other potential sources!



Improving the Gaussian puff model is an active area of research
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Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds

Differences between Simulated and Observed Concentrations
Grouped by whether wind speed was above or below 2 m/s
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Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds
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Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds
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Can we optimize the dispersion coefficients based on the data?



@ EEMDL

Energy Emissions Modeling and Data Lab

2025 EEMDL Annual Conference & Meeting
Poster Session

Title: Optimizing the Gaussian Puff Atmospheric Dispersion Model during Low Wind

Speeds at Night

ABSTRACT

The Gaussian Puff atmospheric dispersion model simulates methane transport through the atmosphere, which is essential to accurately determine source locations and
rates of methane emissions. Wind speed and direction are critical inputs to this model, as they primarily control methane movement through the atmosphere. Wind
also characterizes atmospheric stability classes; for each of these, a set of coefficients determines the distribution of methane concentrations within a plume. This study
analyzes the specific atmospheric conditions under which the model struggles most and presents an optimization framework to address these issues. We use data from
an experiment during which methane releases were conducted from structures at an emissions testing facility at known emission rates. We obtain observed
concentrations from sensors on the site and simulated concentrations from the Gaussian Puff model at each sensor location. By analyzing discrepancies under different
conditions, we find that the model struggles the most during wind speeds of 0-2 m/s at night. These struggles occur because simulated emission plumes from the model
are too narrow under these conditions, leading them to often fail to pick up observed concentration enhancements. To address this issue, we optimize atmospheric
stability coefficients based on our data rather than lookup tables. Incorporating these findings allows for the use of a data-driven Gaussian Puff model that accounts for
emission behavior on a specific site. This can generate more accurate simulations, improving methane emissions understanding and enabling more effective reduction

strategies.

COLORADO SCHOOL OF

MINES

Michael Basanese

Graduate Research Assistant
Applied Math and Statistics
mbasanese @mines.edu

Landon Gehr

Graduate Research Assistant
Computer Science
Isgehr@mines.edu

Dr. Dorit Hammerling
Associate Professor
Applied Math and Statistics
hammerling@mines.edu

1. Background

« Atmospheric dispersion modeling is essential for determining sources and rates of methane
emissions.
Gaussian Puff model equation (concentration contribution from a single puff):

(x —ut)? +y?
207

cp(x,y,2,t) = Z exp (

(2m)20}0,
o (-52) a2

a2 202

« The parameters o,, and g, specify plume width. They are functions of coefficients a, b, ¢, and d,
which are specified based on Pasquill stability classes. These are determined using wind speed
and time of day.

« Pasquill stability classes (A-F):

» A:least stable, low wind speeds during the day
« D: neutral, high wind speeds any time of day
» F: most stable, low wind speeds at night

The Gaussian Puff model is fast and accurate, but it struggles under certain atmospheric

conditions. This may be due to inaccurate stability coefficients.

2. Objectives

Determine the specific atmospheric conditions where the model struggles most, and how it struggles|
differently for different conditions.

Create an optimization framework to change the parametrization of the a,b,c,d coefficients to
improve accuracy under certain conditions.

3. Methodology

Data obtained from continuous monitoring systems (CMS) during ADED 2022-24.

We run the Gaussian Puff model for controlled release events to obtain simulated concentrations
at locations of CMS over time.

* We compare simulations to background-removed CMS observations for different wind speeds and
times of day.

Differences between Simulated and Observed Concentrations
Grouped by whether wind speed was above or below 2 m/s

e
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Figure 1: Boxplots of differences between simulated and background-removed
observed concentrations for each hour of the day, grouped by whether the wind
speed at a time step was above or below 2 m/s. Outliers are not shown. The pink
lines represent typical sunrise and sunset times.

Difference (simulated - observed) (ppm)

« We use a Breadth First Search method to find the optimal a,b,c,d coefficients with respect to MSE.

« We train the model on times with low wind speeds at night, run it with the optimized coefficients,
and compare it to the original model.

4. Results

Percentages of Observations and Simulations at Night that
are Zero, grouped by wind speed bin
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Figure 2: Top: Percentages of simulated and observed values at or below 0.001 ppm at
night, grouped by wind speed. Bottom: Simulated methane plumes during the day and night
generated using a constant emission rate and wind speed. There are too many simulated
zeros at night. This may be because simulated plumes are too narrow.
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Figure 3: Comparison of new vs. original functions for g, and .

4. Results (continued)
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Figure 4: Simulated methane plume at night generated using the optimized a,b,c,d
coefficients with the same emission rate and wind speed from Figure 2. Simulated
concentrations are too low, since the plume is too dispersed.

Time Series of Simulated and Observed Concentrations at a Sensor
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Figure 5: Time series plot of simulated and background-removed observed
concentrations at a sensor during an emission event. Note that spikes in default
simulated concentrations often do not align with spikes in observed concentrations.

5. Conclusions

Gaussian Puff simulations tend to underestimate observed methane concentrations during low
wind speeds at night. Simulated plumes are too narrow, leading to too many simulated zero
values.

Our optimization framework can find new functions for a,, and o, at short distances for low wind
speeds at night.

The optimization did not produce a more accurate model.

Unrealistic results are likely due to our choice of training data or of optimizing over the MSE, which
punishes mismatched elevated concentrations.

6. Next Steps

Try optimizing over something besides MSE, such as:

« Difference in means over small interval

» Metric comparing distributions of simulated and observed data over a short interval
Research other possible solutions to improve accuracy during low wind speeds, such as using a

Colorado State University

diffusive model.
U The University of Texas at Austin
&Y Cockrell School of Engineering

Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds

ee Michael Basanese’s poster
for more details!

“Optimizing the Gaussian Puff
tmospheric Dispersion Model
during Low Wind Speeds at

Night”
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Improving the Gaussian puff model is an active area of research
Direction #2: Account for obstacles

* The current Gaussian puff model is not aware of obstacles, like tanks or buildings.

44



Improving the Gaussian puff model is an active area of research
Direction #2: Account for obstacles

* The current Gaussian puff model is not aware of obstacles, like tanks or buildings.

-Use the Method of Fundamental Solutions (MFS) to approximate the wind field, p(x),
around an obstacle

u(xr) = Vo(x) + uso

>
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O
o
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O
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Improving the Gaussian puff model is an active area of research
Direction #2: Account for obstacles

@EEMDL

Energy Emissions Modeling and Data Lab

2025 EEMDL Annual Conference & Meeting
Poster Session

Title: Obstacle-aware Gaussian Atmospheric Dispersion Model

ABSTRACT

Due to environmental concerns, there is a pressing need for accurate and fast atmospheric dispersion models. The Gaussian Puff

model is a model for estimating the dispersion of trace gases such as methane. The Puff model estimates methane
concentrations analytically by modeling the emission source as a series of discrete and instantaneous “puffs”. This allows the

model to be very fast and lightweight. However, the current version of the Puff model fails to account for impenetrable obstacles

on the domain, which can lead to highly inaccurate results, especially on industrial facilities which have large buildings and
equipment downwind of the emission source. This research proposes an obstacle-aware implementation of the Gaussian Puff
model. The obstacle-aware version will dynamically estimate the windfield accounting for obstacles on the domain, leading to
more accurate modeling for the advection of each “puff” of methane. Additionally, each puff will follow a modified Gaussian

equation designed to satisfy the no-penetration condition near the border of an impenetrable obstacle. Importantly, this model
is completely grid-free, which allows for fast computation which is in turn crucial for real-time inference and broad applicability.

COLORADO SCHOOL OF

) MINES

Andres Pruet

Graduate Research Assistant
Applied Mathematics & Statistics
andres_pruet@mines.edu

Dr. Brennan Sprinkle

Assistant Professor

Applied Mathematics & Statistics
bsprinkl@mines.edu

Michael Basanese

Graduate Research Assistant
Applied Mathematics & Statistics
mbasanese@mines.edu

Dr. Dorit Hammerling

Associate Professor

Applied Mathematics & Statistics
hammerling@mines.edu

1. Background
e Fast and accurate methane dispersion models are
needed to estimate emissions on industrial facilities.
e The Gaussian Puff model is accurate and very fast.
However, it fails in situations with large obstacles.
e We propose an obstacle-aware version.

2. Objectives
e Model the windfield around an arbitrarily shaped
impenetrable obstacle.
e Modify the dispersion of methane to account for the
obstacle.

3. Methodology
e We use the Method of Fundamental Solutions (MFS) to
approximate the windfield «(x) around an obstacle:

u(z) = Vo(x) + teo

d(z) = Zaiaxi(:c)

e The functions ¢, satisty a continuity equation, and the
coefficients a are chosen to minimize penetration of wind
into the surface of the obstacle. . is a constant which
represents the windspeed coming from a point at infinity.

e Additionally, the Method of Fundamental Solutions is
used to modify every puff at each timestep.

Ny

curs(x,t) = c(x,t) + Z Q; fx (%, 1)

i=1

e Here c (in ppm) is the original Gaussian puff equation,
and ¢ _ are functions which also take a Gaussian form.

4. Results
MFS Windfield Accuracy
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Figure 1: Accuracy and leakage. Top: accuracy of the MFS solution
for windfield compared to an analytic solution. Bottom: 2D slice of
methane concentration field for a single puff, at 2 different
timesteps. Black lines represent the path of the puff.

5. Conclusions

e This framework can analytically estimate methane
concentration from a single puff as a function of space
and time.

e Accuracy can be improved by increasing the number of
source points, which comes at the cost of computational
complexity.

e This method never calculates 3-D integrals, only 1-D and
2-D. This results in very fast computation times.

Figure 2: Wind speed and direction at points around a
spherical obstacle, estimated using the MFS.

6. Next Steps

e The methodology here works for a single puff, we still
need an algorithm for integrating over many puffs to form
a complete dispersion model.

e Accuracy of the model will be evaluated by comparing to
real observations at testing centers and operational
facilities.

Colorado State University

The University of Texas at Austin
&Y Cockrell School of Engineering

See Andres Pruet’s poster for
more details!
presented by Michael)

“Obstacle-aware Gaussian
Atmospheric Dispersion Model”
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remqval » Simulation » Localization »
and event detection

STEP 4:
Quantification
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- Background-removed observations
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((((E))) @E))) Pick source estimate using

correlation coefficient
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background removal » . _ » P 3
and event detection Simulation Localization »

STEP 4:
Quantification
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Simulation is a linear function of emission rate

Volume of methane contained in puff p

l

_ 1 (x — ut)* +y° (x— H)
Cp(X, v, Z, 1, Q) — Q (271')3/26)%6Z CXP (_ 26)% ) [exp (_ 202
!

Concentration
contribution of puff p

P

c(X,y,2,1,0) = Z (X, ¥, 2,1, Q)

T .

Total concentration
at (x,v,2,1)

53



Simulation is a linear function of emission rate

Volume of methane contained in puff p

l

_ ! (x = ut + 5 -~ HY @+ H)
cp(x, Y, 2,1, 0) = 0 (27)3 /20-y2cfz exXp (— 20_y2 ) [exp (— 2022 ) + exp (— H GZQ )]
!

Concentration
contribution of puff p

Concentration
data

. .
c(x,v,2,t,0) = Z cp(x, v, 2,1, 0) » Q = argmin {% Z (d(x, v,2, 1) —c(x,y,7,t, Q)>2}
_ Q0 =1
b I I

Total concentration Emission rate Simulated
at (x,y, 2, 1) estimate concentrations
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Methane Concentration [ppm]

60

50

40

30

20

10

Estimated emission rate = 0.1 kg/hr

High
error
Mean squared
error between
observations
and scaled
predictions
‘ Low
error
- la“ l.‘. [ ) ed J 1‘1‘ l
3:00 6:00 9:00 12:00 15:00 18:00
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Methane Concentration [ppm]

60

50

40

30

20

10

Estimated emission rate = 8.7 kg/hr

High
error
Mean squared
error between
observations
and scaled
4 predictions
Low
error
1WA
3:00 6:00 9:00 12:00 15:00 18:00
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Methane Concentration [ppm]

60

50

40

30

20

10

Estimated emission rate = 1.6 kg/hr

High
error
Mean squared
error between
observations |
l and scaled
predictions
Low
error
A
3:00 6:00 9:00 12:00 15:00 18:00
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Open source framework for solving inverse problem

STEP 1:

STEP 2: STEP 3:
Background remqval » Simulation » Localization »
and event detection

STEP 4:
Quantification
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Evaluation on single-source controlled releases

85 single-source controlled releases

S §l -' 2 East | L
West Wellhead > st Separator Emission rates range from

0.2 to0 6.4 kg/hr

West Separator

Emission durations range from
East  ° 0.5 to 8.25 hours

Wellhead

Methane Emissions Technology Evaluation Center (METEC)
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Evaluation on single-source controlled releases

Estimated Emission Rate [kg/hr]

—_— 11 - False positive & false negative
— = Factorof2 --—- No rate estimate
--=- Factorof3 -— Bestfit
o
y = 1.09x
R2=0.85
e 76% within factor of 2
LR - 90% within factor of 3
- ———- Peomr—ememe b @ -—-mrmrmrmemcm
| I l l l l
0 2 4 6 8 10

METEC Emission Rate [kg/hr]

1.0

0.8

0.6

0.4

0.2

0.0

= East Wellhead
¢ East Separator

West Separator ® Tanks
v West Wellhead * False Positive

0.4 0.6 0.8 1.0

METEC Emission Rate [kg/hr]
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Part 1: Single-source emission detection, localization, and quantification

Detection, localization, and quantification of single-source methane emissions on
oil and gas production sites using point-in-space continuous monitoring systems.

William Daniels, Meng Jia, Dorit Hammerling.
Elementa: Science of the Anthropocene, 12(1), 00110, (2024).

A fast and lightweight implementation of the Gaussian puff model
for near-field atmospheric transport of trace gasses.

Meng Jia, Ryker Fish, William Daniels, Brennan Sprinkle, Dorit Hammerling.
Scientific Reports, 15, 18710 (2025).
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CMS sensor CMS sensor
/ Separator
“Continuous
monitoring P
system” m [IIEI

Tank
Wellhead

@ @

CMS sensor
CMS sensor

The multi-source continuous monitoring inverse problem
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MOdel hierarChy n = number of observations

p = humber of potential sources
Assume a multiple linear regression model at the data level

y=X0+¢€

y = {yl""9yn}9ﬁ5 {ﬁl,...,ﬁp},XE[ nxp

/ \

Simulated concentrations

Emission rates for from forward model, with

each source each column assuming a
different source

Concentration
observations
from CMS sensors
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Model hierarchy

N = number of observations
P = number of potential sources

Assume a multiple linear regression model at the data level

Y= {1V

Assume that the errors € = {€, ...

autocorrelated such that

y=Xp+e¢

Vb BEAP .. B L X € RYP

, €, } are are identically distributed, Gaussian, and

e ~ N(0,6°R)
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MOdel hierarChy n = number of observations

p = humber of potential sources
Assume a multiple linear regression model at the data level

y=Xp+e¢

y = {y19°°°9yn}9ﬁ5 {ﬁl,...,ﬁp},XE[ nxp

Assume that the errors € = {¢y,...,€,} are are identically distributed, Gaussian, and
autocorrelated such that

e ~ N(0,6°R)

Let the errors follow an AR(1) process such that

€, =re_;+w

7N

Autocorrelation (Gaussian

coefficient white noise
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MOdel hierarChy n = number of observations

p = humber of potential sources
Assume a multiple linear regression model at the data level

y=Xp+e¢

y = {yl"”?yn}aﬁz {ﬁl,...,ﬁp},XE[ nxp

Assume that the errors € = {¢y,...,€,} are are identically distributed, Gaussian, and
autocorrelated such that

e ~ N(0,6°R)
Let the errors follow an AR(1) process such that

€, =re_;+w
This gives us: y ~ N(X/3, 6°R)
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Model hierarchy

Given an AR(1) process for €, the correlation matrix is

n—1

N = number of observations
P = number of potential sources

68



Model hierarchy

Given an AR(1) process for €, the correlation matrix is

1 —r 0 0
1 —r 1+ —r
R™! = 1 - 12) 0 —r 147’

and

N = number of observations
P = number of potential sources

R|=(1- 2!
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MOdel hierarChy n = number of observations

p = number of potential sources
Data-level: y=Xp +¢

e ~ N(0,6°R)
The remainder of the hierarchy takes the following form

Spike-and-slab

prior allows 0 5 = () “Slab”
lsamples tobe ———> 3, ~ ’ 2 2 component is
identically zero Exp(770°), zi =1 ¢——

non-negative

L z; ~ Bernoulli(6;)
roportion o

.y . h. ai, bi, Ci, d;
samples where 0; ~ Beta(a;, b;) «+—————

can
z; = 1 gives 'rz-z ~ Inv-Gamma(c;, d ) 4¢—— contain
posterior 9 operator
orobability that 0 ~ Inv-Gamma(v/2, v/2) insight
source i is v ~ Inv-Gamma(aq, as)

emitting r o~ UnifOI‘m(Oa 1)
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Model hierarchy

EXp( 2 2) i =

z; ~ Bernoulli(6;)

92’ ~ Beta,(az-, b)

77 ~ Inv-Gamma

o? ~ Inv-Gamma

O, Zz:()
-

Ci, d;)

(

(v/2, v/2)
v ~ Inv-Gamma(aq, as)

r ~ Uniform(0, 1)

4 A
®_’GK \\ Data layer

_ g g )

4 A

N\

Process layer

-
(91 12) eee (6, T r) (o

Y
~

Parameter

layer
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Sampling from the posterior

We can derive Gibbs updates for all parameters except v.

02|§ ~ Beta(z,; +a;,1 —z; + bz)

vV mn vV 1

| ~(y—XB)"R ' (y— Xﬂ))

0°|¢ ~ Inv-Gamma (

lterative samples from each

2 22 2 full conditional gives you
N(XB,02R) 0<r<1 samples from the joint
rie ~ 0 otherwise posterior!
T,L-Qlf ~ Inv-Gamma (zi + ¢;, ﬂ—; -+ dz-)
o)
0 Zp — 0
PRV (5 2) 7 (8 ), ()T s
1 — 0,
z;|€ ~ Bernoulli | 1 -
(1—6,) +6; (#) exp (( J’=1(w"Xﬂ"i+wiX"’i)_?) ) ( 202 )1/2 (1)
i i\ 7252 1237 XX, X5, X5 4 2

vl ~7 (Use a Metropolis—Hastings step)



Model evaluation on multi-source controlled release data

337 controlled releases:
* 99 (29%) single-source
e 238 (71%) multi-source

East
Separator

West Wellhead

i 0 /% '8 Emission rates range from
f_‘f - WNW West Separator 0.08 to 7.2 kg / hr

East >~ C _
Wellhead Emission durations range from

0.5 to 8 hours

Methane Emissions Technology Evaluation Center (METEC)
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Model evaluation on multi-source controlled release data

_ a True emission state B Tank
€ o B West Wellhead
> - O West Separator
Y B East Wellhead
T ° B East Separator
e
s ¥
7))
2
& I
L  Im

O —

o _ . L.
- Estimated emission state
<
o ©
=,
2 o©
©
ad
s ¥
n
72
2 o~ -
LLI

O —

| | | | |

Feb 12 Feb 13 Feb 14 Feb 15 Feb 16 Feb 17
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Model evaluation on multi-source controlled release data

Total emissions [metric tons]

a Site-level and source-level
emission inventories
N~ — e Truth (line)
M@ Estimate (box)
(o —
B Site Total
o B Tank
B West Wellhead
< B West Separator
B East Wellhead
o B East Separator
|
N —
_*
o —

\9010 A Ao|o ’5-10,0 Q'L-QOIO 162’0,0 3%2,°I°

Percent error in quantification totals

Frequency [thousands]

b Site-level quantification errors

Average error = -0.01 kg/hr

5 — I I
I I
I I
< — ] I
-
_g‘)l |
=y I
o — X |
31 I
I I
N I I
I I
I I
T | |
I I
P I o e S I

E—— | ! |
-4 -2 0 2 4 §)

Estimated rate - true rate [kg/hr]

Frequency [thousands]

C

Average number of correct
localization estimates = 3.79

Example:

we correctly

classify 2 out of 5

sources as either

emitting or not

emitting for 9.6%

of the inversion

windows 23%

41.7%

I
0 1 2 3 4 S)

Number of correct localization
estimates per inversion window
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Part 2: Multi-source emission detection, localization, and quantification

A Bayesian hierarchical model for methane emission source apportionment.

William Daniels, Douglas Nychka, Dorit Hammerling.
Annals of Applied Statistics, submitted, (2025).
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One problem... incomplete sensor coverage

Wést Wellhead
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One problem... incomplete sensor coverage

West Wellhead

East Wellhead
West Separator

Wind
direction

/8



Wind
One problem... incomplete sensor coverage direction

Concentration [ppm]

West Wellhead

West Separator

i Concentration [opm]

CMS do not provide emission information when the wind blows between sensors
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Wind
However, we can estimate when this happens! direction

West Wellhead

-~
LV - ) 3 ’
u_ - - - "
< - . " o - -
L A - N -
»
f ‘ T
. -
-
-‘i’

O East Wellhead

Downwind region

Downwind region does not overlap with CMS sensors = period of "no information”
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Wind
However, we can estimate when this happens! direction

w

L o !
)
-—_ - ,
‘ " t !’ ‘?
| ; -
--g y ;u\ J P
-
~ - W *
“~ -
¥ )
-

Downwind region

~~_." ‘-L -
.f‘
= .L -

e .....M 8 O East Wellhead

" West Separator

Downwind region does overlap with CMS sensors = period of “information”
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How do periods of information and no information present themselves in the data?

Methane concentration [ppm]

60 80

40

20

Naive event 1

|<—>l
' Naive event ,
2

10:00

11:00

12:00

13:00

14:00 15:00

16:00 17:00 18:00
Time of day

19:00

20:00

21:00

22:00
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How do periods of information and no information present themselves in the data?

Methane concentration [ppm]

Information Information Information
(- i I i I
| . | - = | - | - -
. Naive event 1 . Information ; Naive event , information
| | | 2 |
| | | |
| | | |
o : ' : :
@ | | | |
| | | |
| | | |
| | | |
| | | |
| | | |
o 0 0 0 0
< 0 0 0 0
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
8 — | | | |
| | | |
| | | |
| | |
| | |
i
o
| | | |

10:.00 11:00 12:00 13:00 14:00 1500 16:00 17:00 18:00 19:00 20:00 21:.00 22:00
Time of day



In practice, run the MDLQ (or DLQ) model on

No No
Information iInformation |Information information Information

60

40

Methane concentration [ppm]
20

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Time of day 84



Whether an interval is no information,

Methane concentration [ppm]

80

60

40

20

No No
Information information |nformation information Information
d4 = nO dJe = NO
info info
A
10:00 11:00 12:.00 13:00 14:00 15:00 16:00 17:00 1800 19:00 20:00 21:00 22:00

Time of day
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Whether an interval is no information, zero emission rate,

No No
Information information |nformation information Information

8 .
g_ qi1 = d4 = NO dJes = NO qr-=0 Qs =0
o 3 - kg/hr info info kg/hr kg/hr
S
©
I=
g Q-
-
@
&)
()]
-
£ Q-
()
=

o |

10:00 11:00 12:.00 13:00 14:00 15:00 16:00 17:00 1800 19:00 20:00 21:00 22:00

Time of day
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Whether an interval is no information, zero emission rate, or non-zero emission
rate depends on the data.

Methane concentration [ppm]

80

60

40

20

No No
Information information Information information Information
Q1 = qz: = 4.5 qQs = 4.7 g4 = NO qs = 5.3 Qs = NO qz=0 Qs =0
kg/hr kg/hr kg/hr info kg/hr info kg/hr kg/hr
p2=0.78 ps = 0.82 ps = 0.64
A
10:00 11:00 12:00 13:00 14:00 1500 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Time of day
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How do you turn these estimates into a measurement-derived inventory?

No No
Information information |Information information Information

8 _
g. q1=0 qz = 4.5 gs = 4.7 04 =NO gs = 9.3 de = NO q-=0 gs=0
o 3 - kg/hr kg/hr kg/hr info kg/hr info kg/hr kg/hr
-
O
© p2 = 0.78 ps = 0.82 ps = 0.64
l=
g Q-
-
o,
O
()
&
£ Q-
D
=

) |

10:.00 11:00 12:00 13:00 14:00 1500 16:00 17:.00 18:00 19:00 20:00 21:00
Time of day

22:00
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How do you turn these estimates into a measurement-derived inventory?
One option: run it long enough to build stable distributions. How long? Depends on how

well iInstrumented.

No No
Information information Information information Information

8 _
g_ qi=0 qz =4.5 qs = 4.7 Q4 = NO qs = 5.3 Qs = NO q7=0 Qs =0
o 3 - kg/hr kg/hr kg/hr info kg/hr info kg/hr kg/hr
-
O
"é p2 = 0.78 ps = 0.82 ps = 0.64
[=
g Q-
-
@)
&
()
T
S Q-
)
>

o A

10:00 11:00 12:00 13:00 14:00 15:.00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

Time of day
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Thank you!
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