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Event detection:

When is an emission happening?


Localization:

Where is the emission coming from?


Quantification:

How much is being emitted?
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system”

The single-source continuous monitoring inverse problem
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d = F(e)

d = concentration data
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d = F(e)

d = concentration data

e = F-1(d)



STEP 1:

Background removal 
and event detection

STEP 2:

Simulation

STEP 3:

Localization

STEP 4:

Quantification

Open source framework for solving inverse problem
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Spike detection algorithm examples

Concentration observations from CMS
Blue shading = identified spike
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Open source framework for solving inverse problem

STEP 1:

Background removal 
and event detection

STEP 2:

Simulation

STEP 3:

Localization

STEP 4:

Quantification
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Gaussian plume model:

models the transport of methane by assuming that everything is steady state 
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Gaussian puff model:

approximates a continuous release of methane as a sum of many small “puffs”
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Gaussian puff model:

approximates a continuous release of methane as a sum of many small “puffs”
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The Gaussian puff can leverage high frequency wind data, 
while the Gaussian plume requires a temporal average.
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Gaussian plume model: mathematical definition

c(x, y, z) =
Q

2πuσyσz
exp (−

y2

2σ2
y ) [exp (−

(z − H)2

2σ2
z ) + exp (−

(z + H)2

2σ2
z )]

Predicted methane 
concentration at 

sensor location (x,y,z)

Emission rate

Exponential decay as 
you move away from the 
downwind vector in the 

horizontal plane

Exponential decay as you move 
away from the downwind vector 

in the vertical dimension

Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with 
downwind vector



cp(x, y, z, t, Q) =
Q

(2π)3/2σ2
y σz

exp (−
(x − ut)2 + y2

2σ2
y ) [exp (−

(z − H)2

2σ2
z ) + exp (−

(z + H)2

2σ2
z )]

Predicted methane 
concentration at sensor 
location (x,y,z) and time t 

from puff p

Total volume of methane 
contained in puff p

Exponential decay in 
concentration in 

horizontal plane (x, y)

Exponential decay in 
concentration in 

vertical dimension (z)
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Gaussian puff model: mathematical definition
Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with 
downwind vector



cp(x, y, z, t, Q) =
Q

(2π)3/2σ2
y σz

exp (−
(x − ut)2 + y2

2σ2
y ) [exp (−

(z − H)2

2σ2
z ) + exp (−
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2σ2
z )]

Predicted methane 
concentration at sensor 
location (x,y,z) and time t 

from puff p

Total volume of methane 
contained in puff p

Exponential decay in 
concentration in 
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Exponential decay in 
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vertical dimension (z)
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Gaussian puff model: mathematical definition
Set up coordinate system so that source is at (0,0,H) and positive x-axis aligns with 
downwind vector

c(x, y, z, t, Q) =
P

∑
p=1

cp(x, y, z, t, Q)Total 
concentration 
at (x, y, z, t)
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Repeat this for all other potential sources!
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Improving the Gaussian puff model is an active area of research
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Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds
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Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds

Daytime

Wind speed = 0.5 m/s

Nightime

Wind speed = 0.5 m/s
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Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds

cp(x, y, z, t, Q) =
Q

(2π)3/2σ2
y σz

exp (−
(x − ut)2 + y2

2σ2
y ) [exp (−

(z − H)2

2σ2
z ) + exp (−

(z + H)2

2σ2
z )]

Daytime

Wind speed = 0.5 m/s

Nightime

Wind speed = 0.5 m/s

Can we optimize the dispersion coefficients based on the data?
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Improving the Gaussian puff model is an active area of research
Direction #1: Better fidelity at low wind speeds

2025 EEMDL Annual Conference & Meeting
Poster Session

1. Background
• Atmospheric dispersion modeling is essential for determining sources and rates of methane 

emissions.
• Gaussian Puff model equation (concentration contribution from a single puff):

• The parameters 𝜎𝑦 and 𝜎𝑧 specify plume width. They are functions of coefficients a, b, c, and d, 
which are specified based on Pasquill stability classes. These are determined using wind speed 
and time of day.

• Pasquill stability classes (A-F):
• A: least stable, low wind speeds during the day
• D: neutral, high wind speeds any time of day
• F: most stable, low wind speeds at night

• The Gaussian Puff model is fast and accurate, but it struggles under certain atmospheric 
conditions. This may be due to inaccurate stability coefficients.

2. Objectives
• Determine the specific atmospheric conditions where the model struggles most, and how it struggles 

differently for different conditions.
• Create an optimization framework to change the parametrization of the a,b,c,d coefficients to 

improve accuracy under certain conditions.

3. Methodology
• Data obtained from continuous monitoring systems (CMS) during ADED 2022-24.
• We run the Gaussian Puff model for controlled release events to obtain simulated concentrations 

at locations of CMS over time.
• We compare simulations to background-removed CMS observations for different wind speeds and 

times of day.

• We use a Breadth First Search method to find the optimal a,b,c,d coefficients with respect to MSE.
• We train the model on times with low wind speeds at night, run it with the optimized coefficients, 

and compare it to the original model.

5. Conclusions
• Gaussian Puff simulations tend to underestimate observed methane concentrations during low 

wind speeds at night. Simulated plumes are too narrow, leading to too many simulated zero 
values. 

• Our optimization framework can find new functions for 𝜎𝑦 and 𝜎𝑧 at short distances for low wind 
speeds at night.

• The optimization did not produce a more accurate model.
• Unrealistic results are likely due to our choice of training data or of optimizing over the MSE, which 

punishes mismatched elevated concentrations.

Michael Basanese
Graduate Research Assistant
Applied Math and Statistics
mbasanese@mines.edu

4. Results

Title: Optimizing the Gaussian Puff Atmospheric Dispersion Model during Low Wind 
Speeds at Night
ABSTRACT
The Gaussian Puff atmospheric dispersion model simulates methane transport through the atmosphere, which is essential to accurately determine source locations and
rates of methane emissions. Wind speed and direction are critical inputs to this model, as they primarily control methane movement through the atmosphere. Wind
also characterizes atmospheric stability classes; for each of these, a set of coefficients determines the distribution of methane concentrations within a plume. This study
analyzes the specific atmospheric conditions under which the model struggles most and presents an optimization framework to address these issues. We use data from
an experiment during which methane releases were conducted from structures at an emissions testing facility at known emission rates. We obtain observed
concentrations from sensors on the site and simulated concentrations from the Gaussian Puff model at each sensor location. By analyzing discrepancies under different
conditions, we find that the model struggles the most during wind speeds of 0-2 m/s at night. These struggles occur because simulated emission plumes from the model
are too narrow under these conditions, leading them to often fail to pick up observed concentration enhancements. To address this issue, we optimize atmospheric
stability coefficients based on our data rather than lookup tables. Incorporating these findings allows for the use of a data-driven Gaussian Puff model that accounts for
emission behavior on a specific site. This can generate more accurate simulations, improving methane emissions understanding and enabling more effective reduction
strategies.

Dr. Dorit Hammerling
Associate Professor
Applied Math and Statistics
hammerling@mines.edu

𝑐𝑝 𝑥, 𝑦, 𝑧, 𝑡 =
𝑞

(2𝜋)
3
2𝜎𝑦2𝜎𝑧

exp −
𝑥 − 𝑢𝑡 2 + 𝑦2

2𝜎𝑦2

exp − 𝑧−𝑧0 2

2𝜎𝑧2
+ exp − 𝑧+𝑧0 2

2𝜎𝑧2

4. Results (continued)

Day: Wind Speed = 0.5 m/s Night: Wind Speed = 0.5 m/s

Night: Wind Speed = 0.5 m/s

Landon Gehr
Graduate Research Assistant
Computer Science
lsgehr@mines.edu

6. Next Steps
• Try optimizing over something besides MSE, such as:

• Difference in means over small interval
• Metric comparing distributions of simulated and observed data over a short interval

• Research other possible solutions to improve accuracy during low wind speeds, such as using a 
diffusive model. 

Figure 1: Boxplots of differences between simulated and background-removed 
observed concentrations for each hour of the day, grouped by whether the wind 
speed at a time step was above or below 2 m/s. Outliers are not shown. The pink 
lines represent typical sunrise and sunset times.

Figure 2: Top: Percentages of simulated and observed values at or below 0.001 ppm at 
night, grouped by wind speed. Bottom: Simulated methane plumes during the day and night 
generated using a constant emission rate and wind speed. There are too many simulated 
zeros at night. This may be because simulated plumes are too narrow.

Figure 3: Comparison of new vs. original functions for 𝜎𝑦 and 𝜎𝑧. 

Figure 4: Simulated methane plume at night generated using the optimized a,b,c,d
coefficients with the same emission rate and wind speed from Figure 2. Simulated 
concentrations are too low, since the plume is too dispersed.

Figure 5: Time series plot of simulated and background-removed observed 
concentrations at a sensor during an emission event. Note that spikes in default 
simulated concentrations often do not align with spikes in observed concentrations.

See Michael Basanese’s poster 
for more details! 

“Optimizing the Gaussian Puff 
Atmospheric Dispersion Model 

during Low Wind Speeds at 
Night”
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Improving the Gaussian puff model is an active area of research
Direction #2: Account for obstacles 

•The current Gaussian puff model is not aware of obstacles, like tanks or buildings.
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Improving the Gaussian puff model is an active area of research
Direction #2: Account for obstacles 

•The current Gaussian puff model is not aware of obstacles, like tanks or buildings.

•Use the Method of Fundamental Solutions (MFS) to approximate the wind field, , 
around an obstacle

μ(x)
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See Andres Pruet’s poster for 
more details! 

(presented by Michael) 

“Obstacle-aware Gaussian 
Atmospheric Dispersion Model”

5. Conclusions
● This framework can analytically estimate methane 

concentration from a single puff as a function of space 
and time.

● Accuracy can be improved by increasing the number of 
source points, which comes at the cost of computational 
complexity.

● This method never calculates 3-D integrals, only 1-D and 
2-D. This results in very fast computation times.

1. Background
● Fast and accurate methane dispersion models are 

needed to estimate emissions on industrial facilities.
● The Gaussian Puff model is accurate and very fast. 

However, it fails in situations with large obstacles.
● We propose an obstacle-aware version.

2. Objectives
● Model the windfield around an arbitrarily shaped 

impenetrable obstacle.
● Modify the dispersion of methane to account for the 

obstacle.

3. Methodology
● We use the Method of Fundamental Solutions (MFS)  to 

approximate the windfield          around an obstacle:

● The functions    satisfy a continuity equation, and the 
coefficients α are chosen to minimize penetration of wind 
into the surface of the obstacle.        is a constant which 
represents the windspeed coming from a point at infinity.

● Additionally, the Method of Fundamental Solutions is 
used to modify every puff at each timestep.

● Here c (in ppm) is the original Gaussian puff equation, 
and       are functions which also take a Gaussian form.

6. Next Steps
● The methodology here works for a single puff, we still 

need an algorithm for integrating over many puffs to form 
a complete dispersion model.

● Accuracy of the model will be evaluated by comparing to 
real observations at testing centers and operational 
facilities.

Andres Pruet
Graduate Research Assistant
Applied Mathematics & Statistics
andres_pruet@mines.edu

4. Results

Title: Obstacle-aware Gaussian Atmospheric Dispersion Model
ABSTRACT
Due to environmental concerns, there is a pressing need for accurate and fast atmospheric dispersion models. The Gaussian Puff 
model is a model for estimating the dispersion of trace gases such as methane. The Puff model estimates methane 
concentrations analytically by modeling the emission source as a series of discrete and instantaneous “puffs”. This allows the 
model to be very fast and lightweight. However, the current version of the Puff model fails to account for impenetrable obstacles 
on the domain, which can lead to highly inaccurate results, especially on industrial facilities which have large buildings and 
equipment downwind of the emission source. This research proposes an obstacle-aware implementation of the Gaussian Puff 
model. The obstacle-aware version will dynamically estimate the windfield accounting for obstacles on the domain, leading to 
more accurate modeling for the advection of each “puff” of methane. Additionally, each puff will follow a modified Gaussian 
equation designed to satisfy the no-penetration condition near the border of an impenetrable obstacle. Importantly, this model 
is completely grid-free, which allows for fast computation which is in turn crucial for real-time inference and broad applicability.

Dr. Dorit Hammerling
Associate Professor
Applied Mathematics & Statistics
hammerling@mines.edu

2025 EEMDL Annual Conference & Meeting
Poster Session

Figure 1: Accuracy and leakage. Top: accuracy of the MFS solution 
for windfield compared to an analytic solution. Bottom: 2D slice of 
methane concentration field for a single puff, at 2 different 
timesteps. Black lines represent the path of the puff.

Dr. Brennan Sprinkle
Assistant Professor
Applied Mathematics & Statistics
bsprinkl@mines.edu

Michael Basanese
Graduate Research Assistant
Applied Mathematics & Statistics
mbasanese@mines.edu

Leakage = 6.96 x 10-3 Leakage = 8.67 x 10-7
Figure 2: Wind speed and direction at points  around a 
spherical obstacle, estimated using the MFS.

Improving the Gaussian puff model is an active area of research
Direction #2: Account for obstacles 



Open source framework for solving inverse problem

STEP 1:

Background removal 
and event detection
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Localization

STEP 4:

Quantification
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Open source framework for solving inverse problem

STEP 1:
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STEP 4:
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cp(x, y, z, t, Q) = Q
1

(2π)3/2σ2
y σz

exp (−
(x − ut)2 + y2

2σ2
y ) [exp (−

(z − H)2

2σ2
z ) + exp (−

(z + H)2

2σ2
z )]

Simulation is a linear function of emission rate 

Volume of methane contained in puff p
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c(x, y, z, t, Q) =
P

∑
p=1

cp(x, y, z, t, Q)

Total concentration 
at (x, y, z, t)

Concentration 
contribution of puff p
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c(x, y, z, t, Q) =
P

∑
p=1

cp(x, y, z, t, Q)

Total concentration 
at (x, y, z, t)

Concentration 
contribution of puff p

Q̂ = argmin
Q { 1

n

n

∑
t=1

(d(x, y, z, t) − c(x, y, z, t, Q))2}
Emission rate 
estimate

Concentration 
data

Simulated 
concentrations
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85 single-source controlled releases

Emission rates range from 
0.2 to 6.4 kg/hr

Emission durations range from 
0.5 to 8.25 hours

Evaluation on single-source controlled releases
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Methane Emissions Technology Evaluation Center (METEC)



Evaluation on single-source controlled releases
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Part 1: Single-source emission detection, localization, and quantification 

Detection, localization, and quantification of single-source methane emissions on 
oil and gas production sites using point-in-space continuous monitoring systems.


William Daniels, Meng Jia, Dorit Hammerling. 

Elementa: Science of the Anthropocene, 12(1), 00110, (2024).

A fast and lightweight implementation of the Gaussian puff model 
for near-field atmospheric transport of trace gasses.

Meng Jia, Ryker Fish, William Daniels, Brennan Sprinkle, Dorit Hammerling.

Scientific Reports, 15, 18710 (2025).
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Model hierarchy
Assume a multiple linear regression model at the data level

Concentration 
observations


from CMS sensors

Simulated concentrations 
from forward model, with 
each column assuming a 

different source

Emission rates for 
each source

n = number of observations

p = number of potential sources

64

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p



Model hierarchy
Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p

n = number of observations

p = number of potential sources
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)



Model hierarchy
Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p

n = number of observations

p = number of potential sources

66

Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

Gaussian

white noise

Autocorrelation 
coefficient



Model hierarchy
Assume a multiple linear regression model at the data level

y = Xβ + ϵ

y ≡ {y1, . . . , yn}, β ≡ {β1, . . . , βp}, X ∈ ℝn×p

n = number of observations

p = number of potential sources
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Assume that the errors  are are identically distributed, Gaussian, and 
autocorrelated such that

ϵ ≡ {ϵ1, . . . , ϵn}

ϵ ∼ N(0,σ2R)

Let the errors follow an AR(1) process such that

ϵi = rϵi−1 + w

This gives us:  y ∼ N(Xβ, σ2R)



Model hierarchy
Given an AR(1) process for , the correlation matrix isϵ

n = number of observations

p = number of potential sources

68

R =

1 r r2 . . . rn−1

r 1 r . . . ⋮
r2 r 1 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 . . . . . . . . . 1



Model hierarchy
Given an AR(1) process for , the correlation matrix isϵ

69

R =

1 r r2 . . . rn−1

r 1 r . . . ⋮
r2 r 1 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮

rn−1 . . . . . . . . . 1

which has closed form expressions for the inverse and determinant:

R−1 =
1

(1 − r2)

1 −r 0 . . . 0
−r 1 + r2 −r . . . ⋮
0 −r 1 + r2 . . . ⋮
⋮ ⋮ ⋮ ⋱ ⋮
0 . . . . . . . . . 1

|R | = (1 − r2)n−1and

n = number of observations

p = number of potential sources



Model hierarchy
y = Xβ + ϵ

“Slab” 
component is 
non-negative

Proportion of 
samples where 

 gives 
posterior 

probability that 
source  is 
emitting

zi = 1

i

70

Spike-and-slab 
prior allows 

samples to be 
identically zero

ai, bi, ci, di 
can 

contain 
operator 
insight

The remainder of the hierarchy takes the following form

ϵ ∼ N(0,σ2R)
Data-level:

n = number of observations

p = number of potential sources



Model hierarchy
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Sampling from the posterior

72

We can derive Gibbs updates for all parameters except . ν

Iterative samples from each 
full conditional gives you 
samples from the joint 

posterior!



Model evaluation on multi-source controlled release data

73

337 controlled releases:

• 99 (29%) single-source

• 238 (71%) multi-source

Emission rates range from 
0.08 to 7.2 kg/hr

Emission durations range from 
0.5 to 8 hours

Methane Emissions Technology Evaluation Center (METEC)



Model evaluation on multi-source controlled release data
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Model evaluation on multi-source controlled release data
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A Bayesian hierarchical model for methane emission source apportionment. 

William Daniels, Douglas Nychka, Dorit Hammerling. 

Annals of Applied Statistics, submitted, (2025).

76

Part 2: Multi-source emission detection, localization, and quantification



One problem… incomplete sensor coverage
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One problem… incomplete sensor coverage
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However, we can estimate when this happens!

CMS 
sensors

East Separator

East Wellhead

Tank

West Separator

West Wellhead
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Downwind region does not overlap with CMS sensors = period of “no information”
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Tank
West Wellhead

CMS 
sensors

East Separator

East Wellhead
West Separator
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Downwind region

Wind 
direction

Downwind region does overlap with CMS sensors = period of “information”

However, we can estimate when this happens!
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Naive event 1 Naive event 
2

How do periods of information and no information present themselves in the data?
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Information 
No 

information 

Information Information 
No 

information Naive event 1 Naive event 
2

How do periods of information and no information present themselves in the data?
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

In practice, run the MDLQ (or DLQ) model on fixed intervals
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

q4 = no 
info

q6 = no 
info

Whether an interval is no information,
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

q1 = 0 
kg/hr

q4 = no 
info

q6 = no 
info

q7 = 0 
kg/hr

q8 = 0 
kg/hr

Whether an interval is no information, zero emission rate,
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

q1 = 0 
kg/hr

q2 = 4.5 
kg/hr

q3 = 4.7 
kg/hr

q4 = no 
info

q5 = 5.3 
kg/hr

q6 = no 
info

q7 = 0 
kg/hr

q8 = 0 
kg/hr

Whether an interval is no information, zero emission rate, or non-zero emission 
rate depends on the data.

p2 = 0.78 p3 = 0.82 p3 = 0.64
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

q1 = 0 
kg/hr

q2 = 4.5 
kg/hr

q3 = 4.7 
kg/hr

q4 = no 
info

q5 = 5.3 
kg/hr

q6 = no 
info

q7 = 0 
kg/hr

q8 = 0 
kg/hr

How do you turn these estimates into a measurement-derived inventory?

p2 = 0.78 p3 = 0.82 p3 = 0.64
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Information Information Information 
No 

information 
No 

information 

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6 Interval 7 Interval 8

q1 = 0 
kg/hr

q2 = 4.5 
kg/hr

q3 = 4.7 
kg/hr

q4 = no 
info

q5 = 5.3 
kg/hr

q6 = no 
info

q7 = 0 
kg/hr

q8 = 0 
kg/hr

How do you turn these estimates into a measurement-derived inventory? 
One option: run it long enough to build stable distributions. How long? Depends on how 
well instrumented.

p2 = 0.78 p3 = 0.82 p3 = 0.64



Thank you! 


