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Abstract11

The Colorado Ongoing Basin Emissions (COBE) project was jointly developed12

between teams at Colorado Department of Public Health and Environment (CDPHE)’s13

Air Pollution Control Division (APCD) and Colorado State University (CSU)’s Methane14

Emissions Technology Evaluation Center (METEC) to help inform the 2026 Colorado15

greenhouse gas (GHG) Intensity Verification Rule. The project is also intended to help16

inform the implementation of the GHG Intensity Verification Rule for calendar year17

2026 and beyond. COBE had three primary objectives:18

• Collect representative measurements of methane emissions from upstream oil and19

gas facilities throughout the state of Colorado via anonymous aerial campaigns.20

• Develop measurement informed inventory (MII)s using the aerial emissions data.21

• Compare the MIIs to operator-reported emissions in the Oil and Natural Gas22

Annual Emission Inventory Reporting (ONGAEIR) to provide recommended ratios23

of modeled total emissions to corresponding reported emissions.24

To collect aerial measurements, the project worked with Bridger Photonics, Inc.25

(Bridger), GHGSat, and Insight M. METEC formed a scientific modeling team with26

Colorado School of Mines (CSM). METEC’s modeling approach used a discrete event27

simulation tool via the Mechanistic Air Emissions Simulator (MAES). MAES is28

intended to first match a reported inventory, here ONGAEIR [1], and then add in29

any measurements of emissions that are determined to not be included in the reported30

emissions. If there is missing key information in ONGAEIR the facility cannot be31

modeled in MAES, which was the case for 19% of facilities for this study. While 81% of32

ONGAEIR upstream facilities that were operating, or partially operating, were modeled33
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in MAES. MAES allows understanding of emissions at the emitter level (most often,34

equipment level). CSM concurrently developed a statistical model that relied only on35

the emissions detections by the measurement technologies, using various data sets to36

inform emissions below the detection limits of the aerial companies, including one of37

emission estimates derived from continuous monitoring systems at facilities included38

in the study and two from the recent literature. Both models developed emissions39

totals and estimated ratios of total modeled emissions to reported emissions. These40

ratios were further split out by major basins and major facility classification. The CSM41

statistical model predicted higher state-wide emissions totals and ratios than the MAES42

model. It estimated emissions between 87,210 and 134,352 mt/y and ratios of 3.30 to43

5.09 (depending on the below-threshold dataset used) when using the same subset of44

ONGAEIR facilities as the MAES model, and emissions of between 109,364 and 167,84845

mt/y with ratios of 3.81 to 5.85 when using all ONGAEIR facilities. In comparison,46

MAES estimated emissions of 38,936 mt/y and a ratio of 1.47. These results are based47

on the 2024 ONGAEIR dataset and provide an update to a previous version of this48

report based on the 2022 ONGAEIR dataset.49

In addition to updating MII results to the 2024 ONGAEIR, this updated report50

includes:51

• The contribution of various emission rates to the MAES model total, showing the52

importance of small emissions (<5 kg/h)53

• Additional methods for estimating emissions below aerial threshold in the CSM54

model55

More work will be done by the science team in COBE-2 to provide a comprehensive56

method reconciliation between the two models developed in COBE. COBE-2, funded57

via the Mark Martinez and Joey Irwin Memorial fund, will additionally develop recom-58

mended default factors for 2027. Similar to COBE, a public report will be disseminated59

near the end of 2026.60
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1 Introduction122

This report is an updated version of the report submitted to CDPHE on June 30, 2025.123

Updates were determined and communicated between the COBE science team and CDPHE.124

COBE represented the largest data collection of its kind (aerial data over upstream facilities)125

and analysis of data and modeling results, including comprehensive reconciliation between126

the two models, will be continued in the recently funded COBE-2 project, anticipated to run127

between 2026 and early 2027.128

1.1 Project Overview129

Anthropogenic methane emissions originate from several major sectors, including agriculture130

through livestock digestion and manure management, energy systems, waste management131

facilities such as landfills and wastewater treatment, and various industrial processes. Natural132

gas and petroleum systems are the second largest source of methane emissions in the United133

States after agricultural sources, contributing almost one-third (30%) of anthropogenic134

methane emissions [2]. Methane is a potent, short-lived GHG and a pollutant of concern.135

During a 20-year period, it has a global warming potential (GWP) of 86 times that of carbon136

dioxide, making the assessment and mitigation of methane emissions especially important to137

achieve near-term climate goals [3].138

Natural gas operations span several distinct phases, from upstream exploration and139

production at well pads to processing, midstream transport, and distribution to end users.140

The work that follows focuses specifically on upstream production activities, which encompass141

wellhead facilities, associated equipment, and on-site operations that extract and initially142

process natural gas before it enters the broader supply chain. Upstream facilities represent a143

high impact area for the measurement and control of methane emissions, as the production144

segment accounts for 60% of the total methane emissions from the United States oil and145

natural gas industry, according to estimates from the EPA [2].146

The traditional approach to quantifying methane emissions from oil and gas facilities is147

the development of a bottom-up (BU) inventory. These inventories form the backbone of148

official regulatory frameworks, including the EPA’s Greenhouse Gas Inventory (GHGI) [2].149

BU inventories estimate emissions by multiplying measured emission rates from individual150

sources by activity factors that represent how frequently those emission rates occur. When151

summed across all equipment at a facility or region, this methodology produces aggregate152

emission estimates. However, limitations in traditional BU approaches drive the need for153

measurement integration to improve inventory accuracy [4, 5, 6, 7].154

Quantifying total methane emissions from producing basins is a topic of interest for both155

operators and policymakers at the federal and state level in the United States. Colorado in156

particular has advanced regulations designed to limit methane emissions during production.157

December 2021 rulemaking created a framework for a program that included the intensity158

thresholds in Kg CO2e/kBOE beginning in CY2025. In 2023, the Colorado Air Quality159

Control Commission (AQCC) adopted its GHG Intensity Verification Rule, which defines160

intensity as the ratio of facility GHG emissions to oil and gas production volume [8]. Before161

calculating intensity, the emissions submitted for a given development are multiplied by a162

distinct intensity factor [8]. Operators in the state are required to either use the default163
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intensity factor provided by CDPHE, or follow an outlined methodology to calculate their164

own, by developing an operator-specific measurement informed inventory (MII) [8]. To165

support accurate implementation of this rule, updated emissions measurements and more166

accurate intensity factors are needed for each basin.167

The COBE project is an environmental initiative to create and refine a regional model of168

the methane emissions of Colorado’s upstream oil and gas facilities. COBE is led by CSU’s169

METEC group with significant modeling support from CSM. By providing an updated170

inventory of methane emissions, the CDPHE and its APCD can better implement and enforce171

the state’s GHG Intensity Verification Rule [8] and other air quality regulations. COBE helps172

develop the methodology for the calculation of the default intensity factor by comparing173

emissions reported to the Oil and Natural Gas Annual Emissions Inventory Reporting174

(ONGAEIR) by upstream operators with the emissions measured by aerial measurement175

campaigns throughout Colorado. There are numerous oil fields in the state; in this project,176

production activities are grouped into three main basins: the Denver-Julesberg, Piceance,177

and “Other”, which includes the Raton, North Park, and other smaller reserves. For this178

project, three aerial methane detection companies were contracted to fly aerial campaigns179

to find methane emissions: Bridger, Insight M, and GHGSat. Each company uses different180

sensor technologies and detection methodologies to quantify methane emissions, providing181

independent datasets for emission measurements and uncertainty assessment [9, 10, 11, 12,182

13, 14].183

To develop ratios that compare modeled to reported total emissions that will be used by184

CDPHE APCD to develop intensity factors to support the GHG Intensity Verification Rule,185

the modeling team (METEC and CSM) focused on measurement-informed inventory MII186

methods. MIIs are an approach to regional emission modeling that combine BU estimates187

with spatially and temporally overlapping measurements. Currently, top-down (TD) methods188

generally suggest that bottom-up estimates based on traditional inventories underestimate189

emissions [4, 5, 6, 7]. There are several reasons for this: one such reason for this is that190

large, rare emissions are difficult to capture in brief measurement campaigns, which means191

that emission factors used in the inventories do not adequately represent the full distribution192

of emission sources [4]. Among these emitters not captured within BU emission factors,193

“super-emitters” are significant sources of methane that are often revealed by TD methods194

[15].195

Additionally, BU modeling relies on activity data which is often incomplete; reporting196

programs such as ONGAEIR only represent known frequency, not the true prevalance of197

emission events. In contrast, TD measurements do not describe behaviors at the emitter198

level, which are useful to assess whether leaks can be prevented or mitigated [16].199

This report details the aerial campaigns, aerial results, and MIIs for Colorado’s upstream200

sector. METEC and CSM developed two independent models, each with strengths and201

limitations, to determine the MIIs and ratios of modeled to reported total emissions. METEC202

uses a discrete event simulation tool called MAES. MAES uses site characteristics and203

emission factor data to generate transient emissions expected for oil and gas facilities across204

the state. For a given oil/gas facility, MAES is used to model a profile of “normal” emissions,205

or essentially a BU inventory of expected emissions. In COBE, the model is compared206

to ONGAEIR as a check on whether MAES accurately represents a facility’s “normal” or207

expected emissions. Then, to address the shortcomings of BU methods, aerial measurements208
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are incorporated into the model to capture emissions not reported in ONGAEIR. Post-209

completion of the measurement surveys, emission detections were analyzed and categorized210

in conjunction with each site’s operator (when available). This process allowed the modeling211

team to attribute a source cause for the results, which is necessary to exclude emissions that212

are already reported within ONGAEIR or caused by equipment maintenance. Emissions213

deemed unlikely to be in the inventory are then integrated into updated MAES models:214

the final modeled emissions are then an estimate of those in the existing inventory plus215

unreported emissions observed in the measurement campaign.216

While the MAES-based approach incorporates operational data and mechanistic simu-217

lations to predict emissions on a site, the statistical model by the CSM team relies solely218

on rates estimated by measurement technologies: it assumes no prior knowledge of typical219

facility emissions. This approach first fits a probability distribution to site-level emission220

rate estimates from all three aerial vendors, taking into account the differences in detection221

sensitivity across vendors. Unlike the MAES modeling approach, the statistical model does222

not differentiate between abnormal emissions and normal process emissions. It assumes223

there is enough aerial data to fully capture the relative rate of occurrence and emission224

characteristics of the abnormal emissions when fitting an overall emission distribution. A225

separate distribution is used to model emissions below the aerial detection thresholds, which226

differ by vendor. Three methods are proposed to this end: one that is informed by continuous227

monitoring systems (CMS)-derived rates, and two that are informed by previous work by228

Williams [15] and Sherwin [17], respectively. These two distributions are then repeatedly229

sampled from to provide state- and basin-wide emissions estimates.230

2 Data and Measurement Methods231

The 2022 ONGAEIR dataset—the most recent publicly available inventory at the project’s232

inception in March 2024—served as a foundational resource. Maintained by the CDPHE,233

ONGAEIR is a database of annual GHG emission estimates submitted by oil and gas operators234

per state regulations [1]. It provides detailed, facility-level information on equipment types235

known to be potential sources of methane and other GHGs. Updated annually and made236

publicly available, the ONGAEIR database plays a critical role in supporting regulatory237

oversight and emissions reduction goals in Colorado. Its comprehensive scope and standardized238

reporting structure made it essential to the design of the sampling plan and modeling approach239

in this study. Although the 2023 ONGAEIR dataset became available midway through the240

project, the team proceeded with the 2022 inventory due to the absence of quality control in241

the newer dataset and because flight planning had already been based on 2022 data. The242

2022 dataset includes records for 11,473 upstream oil and gas facilities in Colorado that were243

fully or partially operational during 2022, according to information provided by operators to244

CDPHE.245

The 2024 inventory, released around September 2025, was incorporated retrospectively to246

align with the timing of the flight campaigns. There is a challenge in merging ONGAEIR247

data across reporting years because facility names often change, reported lat/long locations248

shift, and no unique identifier carries over from one year to the next. Due to flight planning249

using the 2022 ONGAEIR, approximately 8% of facilities in 2022 were not present in the250
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2024 database, which could be due to facilities being shut-in, reported in a different sector (i.e.251

midstream) or an unknown reason. This version of the report uses the new 2024 inventory252

as new counts of facilities and the updated base of emissions. However, all measurement253

figures and statistics are relative to ONGAEIR 2022. In ONGAEIR 2024, 11,681 production254

facilities were operational or partially operational. There were a few facilities with egregiously255

high reported methane emissions in ONGAEIR 2024 and therefore, these facilities were not256

included in this analysis, see Section A.14.257

In addition to the difference in facility counts, the annual gas production and the total258

annual methane emissions reported in ONGAEIR 2024 are roughly half of what was reported259

in ONGAEIR 2022, despite 2,871 additional wells in 2024. One operator with about 2,000260

wells did not report in 2022, which contributes to the well discrepancy. In addition, ONGAEIR261

2022 included approximately 64,000 more pieces of equipment than 2024.262

2.1 Measurement Campaign Criteria & Prototypical Sites263

COBE deployed three aerial companies, Bridger, GHGSat, and Insight M (formerly Kairos264

Aerospace), to collect a representative sample of measurements of methane emissions from265

operating upstream facilities in Colorado. For sample planning, the METEC team considered266

several key stratification variables, including the number of wells per facility, production267

levels, operator diversity, and representative facility types. These representative facility types268

are addressed, following previous studies ([18], [19]), by classifying facilities into categories269

with common equipment groupings, called prototypical sites (PSs); see Table 1. Based on270

the classification of Winrose et al. [18], which defined prototypical sites for the Colorado271

Coordinated Campaign project [20], we developed a simplified classification that also accounts272

for the impact of fluid flow on equipment-level emissions. Specifically, we considered the273

influence of gas lifts, tank batteries, flares, and vapor recovery units, which are known to274

significantly affect site emission profiles. The PSs classifications were made using reported275

equipment from ONGAEIR, and Figure 1 shows the determination scheme.276

Sampling criteria were communicated to the aerial vendors and iterative adjustments277

were made until acceptable sample plans were established. An additional component of the278

sampling strategy included reflights, in which aerial vendors were instructed to re-survey279

20–25% of the selected facilities, ensuring a minimum interval of 24 hours between flights.280

The facilities to resample were pre-determined before flights to not bias towards facilities that281

did or did not have emissions on the first fly-over. Flight scheduling was left to the discretion282

of the aircraft companies, who coordinated operations independently.283
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Figure 1: Facilities were categorized into common equipment groupings based on whether
they contained gas lifts, tank batteries, flares, or vapor recovery units (VRUs). This diagram
shows how PSs were determined.

Our later estimates of emissions by equipment type will require a count of equipment284

at each facility, which we take primarily from ONGAEIR. Using the ONGAEIR database285

for equipment counts is not without limitations. Notably, operators are only required to286

submit records of equipment that have known associated emission events or activities in287

their ONGAEIR submissions. This is because ONGAEIR was designed as an inventory of288

emission sources, rather than a comprehensive inventory of all equipment present at a facility,289

regardless of whether the equipment is expected to have “as-designed” emissions. However, as290

borne out in many recent studies (e.g. [19]), emissions frequently happen unbeknownst to the291

operator. This is particularly pronounced in separators and heaters, which are underreported292

in ONGAEIR compared to alternative data sources such as aerial imagery and operator293

records. For example, these components may emit during failure conditions, yet such emissions294

would be absent from BU inventories and may or may not be captured by aerial surveys,295

depending on time and detectability. This highlights the importance of inventorying all296

equipment with emission potential, not just those with operator-reported leaks. To address297

the specific issue of missing heaters and separators, a decision tree was developed and used298

to adjust equipment counts based on facility characteristics. The logic begins by evaluating299

whether heaters are reported at each facility. When heaters are present but separators are300

absent, separator counts are set equal to the number of heaters. Coalbed methane wells301

retain their original equipment counts due to distinct operational requirements. Non-coalbed302

wells producing only gas maintain original counts, while oil-producing facilities have both303

heater and separator counts adjusted to match well counts to reflect common operational304

practices.305
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2.2 Measurement Campaigns306

The three aircraft companies were deployed across three distinct project phases. The first307

phase occurred from May to July 2024, the second spanned from late July through the308

end of August 2024, and the final phase extended from September 2024 to February 2025.309

Approximately 75% of flights occurred on weekdays and 25% on weekends, with all flights310

conducted between 6:50 AM and 4:50 PM. Gas Mapping LiDAR (GML) data from Bridger311

of concurrent measurements within the Site-Aerial-Basin Emissions Reconciliation (SABER)312

project in the Denver-Julesberg (DJ) basin were incorporated into COBE total emissions313

analysis to increase the available dataset. Due to coordination between the two projects,314

flight data from Bridger in the DJ basin campaign were shared with COBE.315

The objective of the flight campaigns was to ensure broad representation across the316

dataset, with approximately one-third of the samples allocated to each of the major regions:317

the Piceance Basin, the DJ Basin, and the “Others” region, or all remaining regions combined,318

as seen in Figure 2. These basin outlines were provided by CDPHE. The number of PSs per319

basin are shown in Table 1.320

Figure 2: Map of Colorado showing the spatial distribution of PS across major oil and gas
basins using ONGAEIR 2024. The state is divided into two primary basins: the Piceance
Basin (gray) and the Denver-Julesberg (DJ) Basin (blue), with all other basins grouped as
“Other.” These basin outlines were provided by CDPHE. Prototypical sites are color-coded
by class: PS1 (purple), PS2 (red), PS4 (yellow), and PS6 (green). Section 2.1 details the
specifics for each PS.

Operators across the state were informed of the project through email communications and321

public informational sessions were held prior to the start of flight operations. Operators were322

invited to participate and those who chose to participate received all aerial overflight data323
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Basin PS1 PS2 PS4 PS6
DJ 270 378 1,502 591
Piceance 10 1,937 410 744
Others 12 1,187 447 4,193

Table 1: Production facility counts by PS classification across different basins present in the
2024 ONGAEIR data.

related to their assets. This included a full list of all assets that were flown and all detected324

emissions. In return, participating operators supported the METEC team by providing325

cause analyses for detected emissions. A total of 12 operators participated in the project,326

collectively representing approximately 70% of facilities in the 2024 ONGAEIR dataset (and327

77% of the facilities in the 2022 ONGAEIR dataset).328

A structured process was implemented for participating operators: 1) The aerial companies329

conducted flyovers of oil and gas facilities. 2) Emissions data were received by the METEC330

team. 3) METEC organized and sorted all data—both detections and non-detections—by331

operator. 4) Operator-specific datasets were then sent to each participating company, along332

with a set of questions to complete about each emission detection, referred to as a “cause333

analysis”. The project was structured such that all cause analyses reported to the METEC334

team were voluntary and were not required to follow the rigor of more formal processes, such335

as root cause analysis, in order to reduce burden on the operators.336

2.3 Measurement Methods and Data by Vendor337

The three aerial companies use distinct remote sensing technologies for detecting methane338

emissions. All three have participated in controlled testing and field validation studies and339

have demonstrated strong methane emissions localization and quantification capabilities.340

While their measurement systems differ, each has shown the ability to accurately detect341

methane sources under a range of environmental conditions. A summary is provided below,342

and a more detailed description of each aerial technology is presented in Section A.2 of the343

appendix.344

Bridger relies on a GML system that enables high-precision localization and quantification345

of methane plumes by combining a cross-sectional flux estimation method [21] with atmo-346

spheric data [22]. Specifically, the GML 2.0 system was used in COBE, and its performance347

has been evaluated in a controlled release study performed by Thorpe et al. [23]. A detailed348

description of the GML system is provided in Section A.2.1 of the appendix. Bridger’s349

localization capabilities enable attribution of emissions to specific equipment, with reported350

measurements including both the emission rate and the associated equipment type. Site-level351

emissions are calculated by aggregating the daily average emissions from all point sources at352

a given site.353

GHGSat’s aerial measurement technology uses shortwave infrared (SWIR) spectrometry354

to detect methane by analyzing reflected sunlight for gas-specific absorption signatures [24].355

During the measurement campaign, GHGSat deployed three sensors from two generations of356

its technology, with reported detection limits of 10 kg/h and 5 kg/h, respectively. GHGSat357

reports emission rates at specific, geolocated points within the scanned site. In most detections358
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during the measurement campaign, the location was only specific enough to treat the emission359

as a facility-level estimate, but some measurements showed multiple clearly defined plumes,360

which were identified as separate emissions. GHGSat emission detection and localization361

capabilities have been tested in various studies [25, 26, 27].362

Insight M uses LeakSurveyor technology: an aircraft-mounted hyperspectral infrared363

system designed to measure patterns of sunlight energy absorbed by methane [11]. Insight M364

used two different sensors during the measurement campaign, with reported detection limits365

of 25 kg/h and 10 kg/h. Its measurement systems have been tested in several controlled366

release studies, providing accurate plume detection and emission rate estimation [26, 27].367

Insight M reports emission rate estimates at a facility level.368

2.4 Measurement Uncertainty369

The three different aerial companies and the different sensors used have variable probabilities370

of detection and measurement uncertainties. The differences in probabilities of detection are371

especially evident in the data from the measurement campaign (for instance, see Figure 36 in372

the appendix). To account for these differences in aerial technologies, our analysis makes use373

of previously published results from controlled release testing involving the three companies,374

which provide estimates of measurement uncertainties and probability of detection curves.375

Bridger provided us with a copy of their error model, which models the relative error ratio376

for each measurement according to a log-logistic distribution. For consistency, we chose to377

model the errors in GHGSat and Insight M measurements by log-logistic distributions as well.378

Based on publicly available data [25, 27] from controlled release tests, we fit a distribution for379

each of the two different sensors flown by Insight M. GHGSat reports a standard deviation380

for each of their measurements, estimated from multiple sources of error [28], so we used381

log-logistic distributions with these reported standard deviations to model the errors. The382

resulting combination of error models accounts for the differences between the companies,383

and they are incorporated into the analysis and modeling described in later sections. Further384

details on the error models can be found in Section A.2 of the appendix.385

In addition to the error models, probability of detection curves were estimated using a386

combination of the data from the measurement campaign and previously published data from387

controlled release experiments. The probability of detection curves were used in the analysis of388

the data, but to avoid making a direct comparison of the technologies, the curves themselves389

are not presented here. The controlled release experiment of [25] and [29] provided enough390

data to estimate probability of detection for Bridger and for Insight M’s 10 kg/hr sensor;391

in these cases, we fit logistic curves estimating the probability of detection as a function392

of emission rate. Insight M’s 25 kg/hr sensor was assumed to reach a given probability of393

detection at 2.5 times the emission rate needed for the 10 kg/hr sensor. For GHGSat’s three394

sensors, we approximated probability of detection curves by comparing the emission rates seen395

during the measurement campaign with those seen by Insight M’s 10 kg/hr sensor. Further396

information is given in Section A.8 of the appendix. These probability of detection curves397

were taken into account when estimating distributions of emissions attributed to specific398

sources, described in the following section.399
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3 Modeling Methods400

This section presents two distinct methods for modeling methane emissions from production401

sites and estimating state-wide annual emissions. One approach, developed by the METEC402

team, analyzes measurement data in detail to determine emissions that are likely not already403

reported in ONGAEIR, often due to abnormal conditions or equipment failures. Operational404

changes due to the addition of these unreported emission sources are simulated using MAES405

to generate facility-level MIIs. Running these simulations across all sites provides an updated406

annual emissions estimate for Colorado that can be broken down by equipment type and site407

classification.408

The CSM team pursued a statistical approach to provide an independent estimate of the409

average emissions from all production sites as a whole by fitting a distribution to the emissions410

measured by the aerial companies. For the CSM’s statistical model, the aerial data, which411

provides a representative sample of “large enough” emissions (those detectable by aircraft) is412

combined with various datasets to characterize the remaining smaller emissions, producing413

facility-level estimates that account for the full range of emission rates. In particular, three414

below-threshold datasets are tested and compared: one using continuous monitoring data415

from a very small sample of homogeneous sites, and two from the literature in papers by416

Williams [15] and Sherwin [17] that both aim to characterize emissions distributions in the417

DJ Basin. Throughout this section and our results and discussion sections, we will make a418

clear distinction between the two approaches, as they provide different perspectives on how419

measurement data can be used to improve inventory emission estimates.420

3.1 METEC Modeling: the Mechanistic Air Emissions Simulator421

(MAES)422

While various measurement-based approaches exist for quantifying methane emissions from oil423

and gas facilities, an alternative method involves modeling emissions based on facility-specific424

operational data. The Mechanistic Air Emissions Simulator (MAES) is a model developed425

by the METEC team to simulate process flows and associated emissions from oil and gas426

infrastructure at the equipment- and failure-level. Examples of its use in simulating oil and427

gas facilities can be found in [18] and [19]. MAES uses Monte Carlo (MC) methods to capture428

the variability in facility operations and is based on the discrete event simulator (DES)429

method with a time resolution of 1 second. Individual pieces of equipment are simulated as430

state machines, while simulated fluid flows between equipment provide a cohesive model of431

an entire facility; see [30, 31] for further explanation of these modeling approaches. Multiple432

facilities are individually simulated with site-specific parameters, and results are combined433

to derive regional emission estimates. A single simulation of a facility over a period of time434

(typically weeks to years) is referred to as an MC iteration, and the results from a collection435

of MC iterations can be used to approximate a distribution of emissions produced by the436

facility. Typical simulation parameters include a one-year time frame and 100 MC iterations,437

but these may vary depending on the event types users aim to capture. For example, a438

failure event with a probability of 0.001 is expected to occur once, on average, every 1,000439

MC iterations; a larger number of runs increases the likelihood of observing such rare events.440

MAES estimates emissions using two different types of models, mechanistic and traditional.441
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Mechanistic models focus on how fluids move through equipment by modeling the physical442

processes and interactions that govern emissions at each stage of the system. Since they model443

the mechanisms that lead to emissions, they provide a way to model emissions from facility444

characteristics rather than empirical emission data (e.g. emissions factors, campaign data).445

Traditional models use activity data multiplied by emission factors to estimate emissions.446

Emission factors are input to MAES as distributions specifying the frequency of a given447

emission rate. These are determined from emission measurements at oil and gas facilities,448

both from preexisting datasets [32, 33] and from the specific datasets to be studied, in our449

case the data from the COBE measurement campaign. Methods for determining emission450

factors from the observed data are described in more detail in Section 4.2.451

To accurately represent each facility’s unique configuration, MAES requires several452

key inputs, including gas composition, facility configuration, and equipment counts (see453

Figure 40 in the appendix). For this study, facility-specific data for use in MAES were454

obtained from the ONGAEIR database using the calendar year 2022 report, but were then455

updated with ONGAEIR 2024 facility information when it became available. However,456

some critical parameters—such as facility-specific gas composition and detailed process457

connectivity between equipment—were not available in public datasets. In such cases,458

reasonable assumptions were made to fill these data gaps, based on engineering judgment459

and typical facility design practices, using findings from Mollel et al. [18]. To simplify this460

process, the prototypical sites defined above were used to determine the connections between461

equipment.462

To model fluid flows through a facility in MAES, another key requirement is reported gas463

or liquid production. If there is no reported production or there is missing facility information,464

the facility will not be modeled. In ONGAEIR 2022, there were 10,144 production facilities465

that were partially operating or operating that met this criteria and were therefore modeled466

in MAES. This number was reduced to 9,411 using ONGAEIR 2024, which is roughly 81%467

of the 11,681 upstream facilities that were operating or partially operating. See Appendix468

Section A.15 for more information on the criteria for MAES to model a facility. Section 4.5469

investigates the difference in the ONGAEIR reported emissions of the modeled sites versus470

the unmodeled sites.471

For MAES to generate a baseline inventory of Colorado’s many production sites, the472

counts of equipment by type must be input for all facilities. MAES has models for simulating473

various equipment such as wells, tanks, flares, separators, heaters, compressors, dehydrators,474

pneumatics, and miscellaneous equipment. Facility equipment data was taken primarily from475

ONGAEIR, as described in Section 2.1.476

From the inputs described above, MAES outputs a record of each MC iteration for each477

facility. Emissions by each piece of equipment are recorded by start time, duration, and478

emission rate with a time resolution of one second to capture the temporal variability of479

emissions. Results for the entire collection of facilities simulated are combined to produce480

annual emission estimates, broken down by site, equipment, or emission type. These estimates481

can also be made for subsets of the facilities: in our case, we generate separate estimates by482

basin and by prototypical site.483
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3.2 METEC Modeling: Building a Measurement-Informed Inven-484

tory (MII) with MAES485

We follow the process outlined in [19] to create a facility-level MII using MAES. Beginning486

with a given inventory, in our case ONGAEIR, the process identifies emission sources detected487

in the measurement campaign that are likely not accounted for in the inventory. This requires488

a combination of discussions with participating operators and comparisons of measured489

emissions with those from initial MAES model outputs. Once these sources are identified,490

their contribution to the inventory is estimated through updated MAES models that include491

these sources, thereby adding emissions from these sources into the inventory. This process is492

divided into the following steps.493

• A) Inventory matching: normal emissions, including both vented and combusted sources,494

are simulated in MAES. The modeled emissions are compared to reported annual495

emissions from the inventory, providing a diagnostic check on whether the model496

accurately represents the facility’s typical emission behavior. When discrepancies arise,497

both the MAES model and the inventory-reported emissions are examined to identify498

potential causes and resolve inconsistencies. The result is a MAES model that can499

accurately simulate emissions currently reported in the inventory. These initial models500

are called MAES inventory models.501

• B) Emissions Survey and Classification: analysts use the cause analysis (see Section 3.2.1)502

and preliminary MAES models to determine whether measured emissions were related503

to maintenance activities, already reported in the inventory, or unreported. Unreported504

emissions are further classified by their sources (see Section 3.2.2) for use in simulations505

in step D.506

• C) Maintenance Emissions: operator cause analysis or aerial imagery is used to identify507

emissions due to maintenance events. These emissions are not modeled in MAES, and508

the inventory estimates of maintenance emissions are used in the final results.509

• D) MII: based on the classification in the previous steps, emissions that were unre-510

ported are incorporated into an updated MAES model. These additional emissions are511

simulated as abnormal conditions in the identified sources with the frequencies observed512

in measurements (see Section 3.2.3). These models are called MAES MII models.513

• E) Results: the MAES MII models produce a detailed MII, with annual emissions514

estimated by equipment type and site classification.515
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Figure 3: An outline of the MII approach using MAES (reproduced from [19]).

In step A, when the MAES model is compared to ONGAEIR, emission categories not516

modeled within the MAES framework are excluded from the analysis. The following categories517

are excluded:518

• Well Maintenance519

• Loadout520

• Venting and blowdowns - with exception of compressor blowdowns, which are simulated521

by MAES1
522

• Well Bradenhead523

Compressor venting and blowdowns are modeled in MAES whereas other equipment blow-524

downs are not modeled and therefore excluded from further comparison to MAES. Equipment525

blowdowns (with the exception of compressor engines) and other maintenance-related events,526

as described above, are not included in MAES due to their highly episodic nature and the527

current lack of sufficient data to characterize their frequency and magnitude reliably.528

In the early steps of the process, meetings were held with participating operators to529

ensure accurate interpretation and model alignment. The first meeting reviewed results530

from step A, to confirm that the inventory data were correctly represented in the model. A531

follow-up meeting focused on step B to address questions related to the detected emissions,532

the operator-provided cause analysis responses, and any remaining uncertainties regarding533

specific emission events. This process provided valuable insight into the likely causes of each534

emission event, allowing the team to determine whether the source was already accounted535

for in the reported inventory, missing and therefore requiring modeling, or associated with a536

maintenance activity.537

1Emissions from venting and blowdowns were further categorized: venting from compressors was classified
under Compressor Venting, while blowdowns from compressors were placed under Compressor Blowdowns.
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MAES outputs are used at two distinct points in the MII process, in steps A and E. In step538

A, normal operating conditions are simulated in MAES. Here, we assume that the inventory539

(ONGAEIR) provides a reasonable baseline estimate of normal emissions. Activity data from540

the inventory are used to build the MAES inventory models, and the resulting emission541

estimates serve as a diagnostic tool to evaluate the consistency of reported values. Rather542

than adjusting the model to force agreement, discrepancies between simulated and reported543

emissions are investigated to identify potential issues in either the model assumptions or the544

inventory data.545

To evaluate discrepancies between simulated and reported emissions, we applied operator-546

specific thresholds based on the magnitude and context of the observed differences. For547

major participating operators, facilities with absolute differences exceeding 20 metric tons548

per year were flagged for review. For a specific company, a higher threshold of 40 mt/y549

was applied due to broader variability. For smaller operators, a lower threshold of 3-6550

mt/y was used, given the facility types and smaller sample size, with generally lower errors.551

With participating operators, a discussion about these facility discrepancies between MAES552

inventory and ONGAEIR was covered in the first meeting. For non-participating operators,553

where errors were consistently larger and more systematic, we adopted a higher threshold of554

100 mt/y to identify the most significant anomalies. The analysis overall revealed several555

instances where discrepancies appeared to stem from issues within the ONGAEIR database556

or from operator-reported data entry errors. This process was simplified when the model was557

rerun using 2024 data, due to time constraints.558

To compare the best-estimate inventory with the model, one adjustment was made to559

ONGAEIR. It was determined that some operators used Subpart C methane emission factors560

to estimate combustion emissions from stationary engines and turbines. Because these factors561

underestimate emissions from natural gas engines [34], they were scaled to align with the562

updated Subpart W emission factors. This increases the ONGAEIR total methane emissions563

by approximately 2,300 mt/y.564

This iterative process supports mutual validation of both the simulation framework and565

the reported emissions, assuming the activity data is correct. Once the inventory model566

is close to the reported ONGAEIR annual emissions (approximately within a 15% error),567

then the MII model can be run, using updated inputs that reflect the emissions classified as568

unreported. Multiple MC iterations were used to approximate the distribution of emission569

estimates for each facility—100 iterations per facility for the inventory model, and a variable570

number of iterations in the MII model determined by 1/probability of leak (pLeak). From571

these distributions, 95% confidence intervals are reported to indicate the variability in these572

estimates. The outputs from the MII model were compared with those from the inventory573

model and estimates from ONGAEIR to determine the change in emissions.574

Sections 3.2.1, 3.2.2, and 3.2.3 elaborate on the more intricate parts of the process.575

The MAES inventory and MII models constructed by this process, along with comparisons576

ONGAEIR, are presented in Section 4.3.577

3.2.1 Operator cause analysis578

For the MAES MII process, it was necessary to parse emissions data and label events with a579

suspected mechanism/cause. Certain types of equipment failure (i.e., flare malfunction) can580
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be modeled mechanistically within MAES once their frequency and emission characteristics581

are understood from the measurement data. Maintenance-related emissions, however, must582

be excluded from simulation, as they are operator-controlled and don’t follow predictable583

emission rate patterns that can be captured in the modeling framework (see below). To584

properly classify each detected emission, we engaged in a structured cause analysis process585

with participating operators. Each operator received a specific dataset of all aerial detections586

at their facilities, including both detections and non-detections, and a meeting was held to587

determine a plausible explanation for each emission event. This process aimed to determine588

whether the emission was due to normal operations, equipment failure, or maintenance589

activities. It also served to assess whether the emission was already captured in their590

ONGAEIR reporting and to identify the likely equipment source. This operator feedback591

was important for accurately categorizing emissions and ensuring the MII properly captured592

only those emissions missing from ONGAEIR.593

Maintenance activities are highly transient, so aerial methods, which see a snapshot of594

emissions at a particular time, cannot reliably quantify emissions from these events. For595

this reason, these emissions were not modeled in the MAES framework and were excluded596

from the emission distribution. Since maintenance still contributes to total emissions, we597

add maintenance emissions reported in ONGAEIR back to the final MII totals to ensure598

complete emissions accounting.599

In total, 42 measured emissions were attributed to maintenance activities, 38 of which600

were identified by the operator, and 4 of which were identified by the analyst of this team.601

The analyst identified a maintenance activity if there was a truck on site near the emission602

event, or if the same source was emitting within one work week of the operator reporting a603

maintenance activity. These events included liquid unloading, blowdowns, engine startups,604

bradenhead venting, swabbing, and open thief hatches. If there were multiple detects on the605

site during a maintenance event, all emissions from that day were excluded from the MAES606

MII modeling. The probability of detecting a maintenance event determined from the COBE607

aerial campaigns is 0.00127 for the state of Colorado. At a more granular level, Bridger608

detected 33 emission events that were classified as maintenance activities across 26 facilities,609

with an average emission rate of 12 kg/h. GHGSat detected 4 maintenance activities at 4610

facilities, averaging 82.2 kg/h. Insight M detected 5 maintenance activities at 5 facilities,611

with an average emission rate of 36.7 kg/h.612

Emissions that are excluded from the MII model, shown in Table 2, include those due to613

maintenance activities, pre-production activities, midstream site identity, and misalignment614

between the detection location and the reported coordinates. Of 2,102 nonzero emission615

measurements, Bridger recorded 44 that were determined by the modeling team to be from616

pre-production activities, while GHGsat and InsightM did not pick up any emissions at these617

sites. 96 emission detections from midstream facilities were identified (by operators): 80 from618

Bridger, 6 from GHGSat, and 10 by InsightM. 40 emission detections were spatially offset619

from the facility coordinates reported in ONGAEIR. Operators informed the team that the620

associated facility names were either incorrect or that the facilities no longer belonged to621

them; all but two (one from InsightM, one from GHGSat) were detected by Bridger. This is622

all reflected in the anonymized dataset [35].623
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Table 2: Summary of emissions excluded from MII modeling by category and aerial vendor

Category Bridger GHGSat Insight M Total

Pre-production activities 44 0 0 44
Midstream facilities 80 6 10 96
Location misalignment 38 1 1 40
Maintenance 33 4 5 42

3.2.2 Classifying emissions624

As described above, one of the benefits of incorporating MAES simulations into an MII is the625

ability to model the emissions contributed by various types of equipment. Here we detail the626

process of classifying unreported emissions observed by aircraft according to their sources.627

Emissions are considered at the equipment level, when possible; in cases where multiple628

measurements of emissions from the same equipment were recorded in a single day, they were629

recorded as a single detection and the emission rates were averaged. Insight M and GHGSat630

typically reported at the facility level. When successive observations are made within minutes631

of each other, they are counted as a single observation, and the associated emission rates632

are averaged. Based on the simulation abilities of MAES, for this study we have attributed633

emissions to the following “failure types”, each of which is simulated in an associated type of634

equipment in MAES.635

• Compressors - rod packing failures are modeled by MAES. Observed emissions likely636

include a combination of combustion slip, crankcase emissions, and rod packing emissions,637

which cannot be measured separately by aircraft. To assess whether observed emissions638

are consistent with normal operation or indicative of a failure, we first reviewed the639

operator’s cause analysis. Next, for each facility, compressor-specific information640

(brake horsepower, engine class, etc.) from ONGAEIR was used in MAES to estimate641

crankcase, driver exhaust, and rod packing emissions for all compressors. Due to the642

lack of operational data at the time of the flyover, we assumed all compressors were643

active. To isolate measured rod packing emissions, the MAES estimates for driver644

exhaust and crankcase emissions were subtracted from the total measured compressor645

emissions, and the remaining emissions were attributed to rod packing. This value was646

then compared to the expected rod packing emissions from MAES: if the measured rod647

packing emissions exceeded the MAES estimate, the excess was attributed to potential648

rod packing failures at the facility.649

• Flares - failures include both malfunctioning and unlit flares. To identify these cases,650

the process below was used to determine whether the measured emissions exceeded651

normal emissions estimated by MAES. The mechanistic MAES model for flares only652

requires an estimate of frequency of failures, so estimates of emission rates are not653

needed.654

• Heaters - failures are heater malfunctions resulting in incomplete combustion. To655

identify when a heater was malfunctioning, the process below was used to determine656
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whether the measured emissions exceeded normal emissions estimated by MAES. As657

with flares, the MAES model for heaters only requires an estimate of frequency of658

failures, so estimates of emission rates are not needed.659

• Tanks - controlled and uncontrolled tanks are modeled separately. Since emissions660

seen by aircraft often have an unknown cause (uncontrolled tanks, stuck dump valves,661

open thief hatch, etc.), they are grouped into a single emission factor. Because the662

specific cause can often not be determined, tank emissions modeled in the MAES MII663

models include all emissions from tanks greater than 2 kg/hr, regardless of failure or664

normal operations. Emissions from tanks below 2 kg/hr are already modeled as tank665

component leaks by MAES, and are matched to inventory emissions in step A.666

• Miscellaneous emissions - these are emissions classified by Bridger as “Other” or667

“Facility Piping”, and emissions where the source is unknown. These are modeled by668

a single “miscellaneous” emitter in MAES. If aircraft measurements include multiple669

simultaneous emissions attributed to the miscellaneous category, these are summed to670

be modeled as a single emitter in MAES. To identify when the miscellaneous emissions671

exceeded expected MAES estimates, the process below was used.672

Each detected emission was attributed to one of these failure types. Bridger reports673

associated equipment for their emission measurements, which were used in the absence of674

other information from the cause analysis for these cases. Equipment are not reported by675

GHGSat and Insight M, so emissions they report must be assigned a failure type separately.676

The cause analysis and aerial imagery were used in these cases to determine the likely source677

of the emission and assign a failure type. Uncertainty in this process is reflected through the678

probability scores described below.679

To determine whether the detected emitters exceeded levels consistent with normal680

operations, the following process was used (see Figure 4 for an example). The MAES results681

from step A (i.e. expected inventory emissions) generated both a probability distribution682

function (PDF) and a cumulative distribution function (CDF) for each facility. Each detected683

emission event was overlaid on the corresponding facility-specific CDF to determine whether684

it fell within the expected range of emissions. If the detected emission was within the modeled685

CDF range, it was considered consistent with expected emissions. If it fell outside the modeled686

distribution—particularly in the upper tail, like in Figure 4—analysts assigned a MAES687

failure type using any operator notes and aerial imagery. In the above step, if there were688

questions regarding an emission detection, this was covered in the second operator meeting.689
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Figure 4: The 1-Hz simulated results for a facility were converted to a probability distribution
function (PDF) (top) and cumulative distribution function (CDF) (bottom). This facility
was simulated for 14 days, with 100 MC iterations. The aerial estimate is overlaid on the
CDF as a red dot. In this example, the emission is unlikely to be due to normal operations,
as it falls above the distribution of emissions simulated in MAES.

Identification of emission sources comes with uncertainty, as aerial measurements are690

frequently not precise enough to identify a source with absolute certainty. As such, for691

each emission classified into a MAES failure type, a probability was assigned to indicate the692

likelihood that the event represented a failure and the likelihood the emission was from the693

correct location. Analysts reviewed aircraft-provided imagery and evaluated each detection694

based on the following criteria, assigning each a probability score ranging from 0 to 1:695

LOCATION PROBABILITIES696

• Emission onsite (binary):697

– 0 = No (emission does not appear to be on facility site).698

– 1 = Yes (emission is clearly located on the facility site).699

• Plume origin at specific equipment source:700
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– 0 = No identifiable concentration near specific source equipment.701

– 0.4 = Diffuse concentration observed, not clearly associated with a specific source.702

– 0.6 = Emission plume is visible but has drifted or is not clearly traceable to a703

specific piece of equipment.704

– 0.8 = Plume appears likely to originate from equipment source, though the source705

may be shared among multiple units or is somewhat ambiguous.706

– 1 = Clear emission concentration from a specific source (e.g., tank, separator,707

compressor).708

• Plume transport quality:709

– 0 = Poor or no visible transport710

– 0.4 = Plume is present but poorly defined, with a wide, irregular, or unstable711

shape. Transport direction is unclear or inconsistent.712

– 0.6 = Plume is somewhat visible, though still lacking clear definition. Transport713

direction may be inferred but is uncertain.714

– 0.8 = Plume is faint or somewhat dispersed, but transport is still reasonably715

directional and consistent.716

– 1 = Plume is clearly visible, with a narrow and coherent structure that reflects717

strong, directional atmospheric transport.718

FAILURE PROBABILITIES719

• Classification of failure or normal:720

– 0 = Normal emissions, falls within the MAES CDF and/or operator noted normal721

operations.722

– 0.4 = Outside of MAES CDF, but measurement uncertainty could indicate within723

CDF.724

– 0.6 = Emission is outside the MAES CDF, but the operator reported normal725

operations, or emission is within the CDF, but the operator reported a failure.726

– 0.8 = Outside of MAES CDF, no operator information to confirm.727

– 1 = Operator noted failure and outside of MAES CDF.728

The product p of these scores is an estimate of the probability that the source is identified729

correctly and is a failure event. An emission identified as a failure type with probability730

p is counted as p emissions when estimating the frequency of this failure type (details will731

be described in Section 3.2.3). In cases where the source is not confidently identified, the732

observed emissions are not discarded; instead, they are modeled as originating from an733

unknown source. Specifically, if p < 1, then the remaining probability 1 − p is used as the734

probability the emission is attributed to the miscellaneous emitter category. For example, if735

an emission is attributed to tanks with a probability of p = 0.6, then the remaining probability736

of 0.4 is assigned to miscellaneous emissions.737
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While the assignment of these probabilities involves some degree of subjectivity, it offers a738

more realistic representation of uncertainty compared to treating all detections as fully certain.739

This approach acknowledges the inherent variability in observational data and addresses740

limitations in confidently attributing emissions to specific sources. In practice, probabilities741

were rarely assigned a value of zero, reflecting the presence of at least some supporting742

evidence in most cases. Additionally, the classification of emission events as either normal743

or indicative of failure further illustrates how the MAES framework integrates with and744

depends on information reported in ONGAEIR, as the CDFs used above are from the MAES745

inventory model that has been designed to match ONGAEIR. The probabilities determined746

in this step are taken into account when estimating the frequency of emissions for use in the747

MAES MII model, as described in the following section.748

It should be noted that this emission classification step was done for the MAES inventory749

models using ONGAEIR 2022. Due to time limitations, we could not go back through this750

step using the updated MAES inventory model with ONGAEIR 2024.751

3.2.3 Estimating distributions of emissions from failures752

Based on the classification of emissions described above, we estimate a probability of observing753

each failure type along with a distribution of the resulting emissions, both used as inputs to754

MAES. The use of aircraft measurements to simulate emissions in MAES makes the common755

“ergodic assumption” of emissions: that the distribution of emissions observed across many756

facility/equipment samples provides an accurate estimate of the emissions expected from a757

single facility/piece of equipment over a long period of time.758

The probability we estimate, called pLeak, is the probability a piece of equipment is759

leaking at any given time. This is a useful statistic since it can be estimated from observations,760

and MAES simulates these leaks according to a Poisson process that ensures the portion of761

time spent in a failing state matches this probability. In previous studies, pLeak for a given762

failure type was estimated as the number of times this failure type was observed within a763

measurement campaign divided by the total count of equipment observed; the distribution of764

emissions from the failure type was approximated by the observed distribution of emissions765

(taking into account uncertainties from aerial measurements). Because the present data766

comes from six sensors across three different aerial companies, we found it necessary to use a767

more detailed process to estimate these probabilities and distributions, so that the different768

detection limits were considered. That is, because of Bridger’s lower detection limit relative769

to the other aerial companies, we expect Bridger to have a much more accurate estimate of770

the frequency of low emission rates, whereas all three companies should be used to estimate771

high emission rates.772

Rather than establish a hard cutoff of an emission rate under which only Bridger’s data773

is used, we use the probability of detection curves for the different companies and sensors to774

weight the observations appropriately based on emission rate. For a small range of emission775

rates, the number of “effective samples” taken by a sensor is the total number of samples776

times the probability of detection in this range; the probability of a failure in this range777

is then estimated by the number of failures observed (weighted by the probability scores778

assigned above) divided by the total number of effective samples across all sensors. From779

the estimates of the probabilities in each range of emission rates, pLeak is estimated as the780
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sum of the probabilities and the distribution of emissions is approximated as the normalized781

histogram of numbers of failures in these ranges. The aircraft measurement uncertainties782

described in Section 2.4 are used throughout by replacing each measured emission rate with783

its modeled distribution for the true emission rate. The end result is distributions that rely784

mostly on Bridger at low emission rates and gradually incorporate Insight M and GHGSat785

measurements as the emission rate increases. Details on the method are given in Section A.9786

of the appendix, and the resulting distributions are pictured in Figure 38.787

Heaters and flares are modeled mechanistically in MAES, so an emission factor is not788

used. Instead, the pLeak calculated for heaters and flares is used in a Markov transition789

matrix that calculates the probability of malfunctioning, as required by MAES (see the790

Supplementary Information of [18]). Because of this difference in modeling, which does not791

require a distribution of emission rates, and because GHGSat and Insight M observed only792

small numbers of heater and flare failures, we simply used Bridger’s detections and sample793

size to estimate pLeak for these equipment types, rather than the method above. That is, in794

these cases, pLeak was computed as the number of failures observed by Bridger (weighted795

by the probabilities assigned above) divided by the number of samples of the equipment796

type taken by Bridger. The remaining equipment types are modeled traditionally in MAES.797

The distribution from the associated failure types are used as emission factors for abnormal798

emissions, which are simulated in the MAES MII model.799

Table 3 shows the estimated values of pLeak, along with the sample sizes observed800

during the measurement campaign. Equipment counts for each site were obtained primarily801

from ONGAEIR, as described in Section 2.1. In cases where the same site was scanned802

multiple times, the equipment was counted once for each day scanned: reflights of facilities803

were predefined and therefore counted only once per day, even if a facility was captured804

multiple times within a short time span. This approach accounts for the fact that some805

aerial methods have wide scan widths, which can result in multiple detections of the same806

facility within minutes. For the miscellaneous category, one sample was counted for each807

site for each day scanned, as this agrees with the modeling of miscellaneous emissions in808

MAES. While the values of pLeak are dependent on the manual classification of emissions809

described in Section 3.2.2, a sensitivity study showed that errors in the pLeak values produced810

proportionally smaller errors in the final MII results; see Section 5.3.1 for a summary.811

Table 3: Equipment samples and estimated values of pLeak. Here equipment has been
counted once for each day scanned. For flares and heaters, only Bridger samples were used to
compute pLeak: Bridger sampled 10857 flares and 35064 heaters.

Sample size pLeak

Compressors 11,015 0.0160
Miscellaneous emissions 32,865 0.0368
Flares 23,941 0.0038
Heaters 118,799 0.0026
Controlled Tanks 74,051 0.0028
Uncontrolled Tanks 26,854 0.0076
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3.3 Colorado School of Mines Modeling: Measurement Based812

Inventory Using a Statistical Model813

We now pivot to describe a fundamentally different approach to building a Measurement814

Based Inventory (MBI), developed by the CSM team. Unlike the MAES approach, which uses815

detailed facility information from ONGAEIR, we now assume no prior knowledge about site816

emissions and instead base the statistical model on measurement data. At a high level, this817

approach uses two distributions of facility-level emission rates in Colorado: one fit using aerial818

emissions estimates, adjusting for the differing detection sensitivities between vendors, and819

one that represents emission rates below the aerial detection thresholds, which is estimated in820

a few different ways: one using Continuous Monitoring System (CMS)-derived emissions and821

two additional approaches based on prior work by Williams (2025) [15] and Sherwin (2024)822

[17]. Details of how the emissions were derived from CMS data are provided in Section A.3823

of the Appendix. We then repeatedly sample from these distributions to generate state-wide824

emissions estimates on any desired timescale. This work represents an early iteration of our825

conceptual approach; future research will investigate alternative methodologies and examine826

several of the assumptions currently being made in more detail.827

3.3.1 Distribution modeling828

As a first step in our statistical MBI model, we aim to build a facility-level emission rate829

distribution for oil and gas production sites in Colorado, combining data from all three830

available vendors. However, we cannot simply fit a distribution to all three datasets combined831

since each vendor has a different detection sensitivity and multiple vendors flew systems with832

differing sensitivities, meaning that emission rates that all three vendors are likely to see833

would be overrepresented in comparison to emission rates that only one or two of the vendors834

would be sensitive enough to detect. To solve this issue, we draw inspiration from Kunkel835

et al. [36], who fit an emission rate distribution to data provided by Bridger and Carbon836

Mapper, taking into account the varying detection sensitivities of the two technologies. A837

core idea behind their methodology is choosing a distribution matching cutoff (DMC) for838

each vendor: a facility-level emission rate above which we expect that vendor to detect all839

emissions, i.e. where probability of detection approaches 100%. The emission rate distribution840

is then fit only to rates above this DMC for each vendor. In this project, we use 5 kg/hr841

for anonymized company code L (Company L), 51 kg/hr for anonymized company code842

H (Company H), and 49 kg/hr for anonymized company code Q (Company Q). Note that843

while some vendors (specifically GHGSat and Insight M) use multiple sensors which in reality844

likely have different DMCs, we opt to find DMCs on the vendor level due to the small sample845

sizes of positive detections, an issue which would be exacerbated when dividing further846

by sensor. The DMCs for Company H and Company Q were determined by examining847

how well the distributions of their observed facility-level rates align with those observed848

by Company L above a range of cutoffs. This method is based on the assumption that all849

the vendors sample from the same underlying facility-level emission rate distribution, just850

at different detection sensitivities. If that assumption is met, their observed emission rate851

distributions should align above an appropriate DMC, in the emission rate regime where both852

vendors are detecting all occurring emissions. This assumption was tested using two-sample853
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Anderson-Darling tests, which test the null hypothesis that two samples come from different854

distributions. To account for the small sample sizes, permutation-based tests were used, and855

found no significant differences in distribution between facility-level emission rates observed856

by Company L and Company H/Company Q above their respective DMCs (p-values of 0.26857

and 0.81, respectively, with significance defined as p < 0.05). Note that decreasing the DMCs858

does not immediately result in significantly different distributions, and these higher DMCs859

with larger p-values were chosen as conservative estimates: DMCs are not meant to represent860

detection thresholds, especially since they aggregate together vendor systems flown with861

different sensitivities. Rather, they are intended to provide a cutoff to ensure all emission862

rates used in the distribution-fitting process are being sampled at their true frequency, and863

not impacted by detection sensitivity. Even though a DMC cutoff was applied, the measured864

surveys did capture many emissions below the DMC threshold for all three of the aerial865

vendors. Determining an appropriate facility-level DMC for Company L is more challenging,866

as there is no reference distribution with a lower detection threshold to compare against.867

Instead, we choose 5 kg/hr as a reasonable estimate based on their probability of detection868

curves for equipment-level detections, increasing the cutoff to adjust for our DMC being on869

the facility-level, and the probability of detection curves being on the equipment-level (see870

Section A.8 of the Appendix), and provide analysis on the effects of that choice on the results871

in the form of a sensitivity study, see Figure 6. Note that in future iterations of this work,872

we will investigate more robust methods for selecting DMCs, as well as alternatives for the873

combination of data across vendors more generally.874

875

We use a lognormal distribution to model facility-level emission rates, as it handles876

nonnegative data that is right-tailed, both of which are true of the observed emission rates.877

Note that a more flexible generalized lognormal distribution was also tested, but via Akaike878

information criterion (AIC) and Bayesian information criterion (BIC) testing, the traditional879

lognormal was found to perform better. The lognormal distribution has two parameters, b880

and x0, and follows the density881

p(x; b, x0) ∝ 1
x

exp
(

−(log10x − x0)2

b2

)
.

The parameters are estimated via maximum likelihood estimation, and in order to fit to all882

three vendors’ data simultaneously, their datasets are assumed to be independent, and their883

respective log-likelihoods are summed. Note that these log-likelihoods are calculated only884

using emission rates above each vendor’s DMC. This fitting process results in estimated885

parameters of a lognormal distribution that represents the relative frequency of emission886

rates above the lowest DMC, in this case Company L’s, 5 kg/hr. The resulting distribution887

can be seen in Figure 5, where observed frequencies are shown by colored shapes that differ888

by vendor, and the model is shown with a black line.889
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Figure 5: Estimated distribution of facility-level emission rates above 5 kg/hr for all sites in
ONGAEIR. The dots for each vendor represent a histogram of the observed emission rates
above the selected DMC threshold, plotted as symbols instead of bars for visual clarity. The
black line indicates the fitted lognormal density. An inset is shown for the higher rates. Note
the logarithmic scale of the horizontal axis.

3.3.2 Aggregation890

With an estimated facility-level emission rate distribution, additional steps must be taken to891

arrive at a state-wide emission rate and/or mass estimate. On a high level, our approach892

involves segmenting the time-frame and facilities of interest into a number of “facility-hours”893

(the number of facilities multiplied by the number of hours in that time-frame, e.g. for an894

annualized inventory, 8760 hours), sampling an emission rate for each of these facility-hours,895

and summing the resulting rates to get a total mass estimate, which can then easily be896

converted into a rate if needed. Implicit in this method is the assumption that each emission897

lasts for an hour. However, this does not mean we think that that assumption is necessarily898

reflective of actual emission durations: it is simply a discretization choice, and the method899

is invariant to that choice: using an assumed duration of 1 minute (i.e. sampling 60 times900

the number of rates but dividing by 60 to get the mass emitted by each rate) led to nearly901

identical results, differing slightly only because of the stochasticity of the method. This902

method has another implicit assumption: that emissions are an ergodic process, meaning903

that we can use our distribution estimated from emission rates at many facilities equivalently904

as a distribution for a single facility over time. This is a common assumption in the methane905

emission aggregation literature [37, 36], and will be tested using CMS data in future work.906

Since our emission rate distribution inferred from the aerial data is only valid down to a907

threshold of 5 kg/hr, there are two additional components we need for this method: a way to908
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estimate the probability of an emission above 5 kg/hr occurring at any given time and a way909

to sample emission rates below 5 kg/hr. The first is quite straightforward: we can estimate910

this probability simply as911

# of Company L estimates > 5 kg/hr
# of total Company L estimates, including non-detects .

Since we are treating 5 kg/hr as Company L’s facility-level DMC, the assumption is that any912

rate at 5 kg/hr or above will be observed properly, so if that assumption is met, we should913

have an unbiased estimate of the desired probability. However, this method also depends on914

the ergodic assumption: this determination method assumes that the probability is the same915

for a single site over time as it is across multiple sites. The resulting probability is just over 4%.916

917

A way to sample from below-threshold emission rates is more challenging to obtain. We918

consider five methods for below-threshold sampling.919

1. The first is simply sampling “zeroes” (i.e. each non-detect represented zero emissions920

from a given facility) for all rates below 5 kg/hr. This will clearly result in an921

underestimate for the total mass/rate, as not all rates below 5 kg/hr are identically922

zero, but it serves to provide a lower bound on our estimate.923

2. The second method is sampling from a uniform distribution between 0 and 5 kg/hr. This924

method is almost certainly an overestimate, as the literature indicates that emission925

rate distributions are heavily right-skewed, meaning lower emission rates are much926

more common than higher emission rates [38]. However, analogous to the method that927

samples only zeroes, this is helpful in providing an upper bound on our estimate.928

3. The third method we propose for below-threshold sampling involves sampling (with929

replacement) from rate estimates based on CMS data. Further details about the CMS-930

derived emission rates in this study are provided in Section A.3 of the appendix. Note931

that we only sample from emission rates not captured by the aerial distribution, i.e.932

rates between 0 and 5 kg/hr. This method also has its downsides, specifically that933

the CMS data comes from only 5 facilities, all owned by the same operator, all in934

the Piceance basin, and all of class PS6, which likely does not generalize well to the935

entire state of Colorado. However, given the available data, this CMS-informed method936

represents a first estimate for an entirely measurement-based inventory using timely937

data from within the study region. Future work will involve investigation into methods938

to integrate these CMS-derived emissions distributions more rigorously with the aerial939

data, as well as the conduction CMS inference data on more sites to more accurately940

capture the below-threshold emissions distribution across Colorado.941

4. The fourth method samples from the Denver-Julesburg-specific emission rate distribution942

from Williams et al. [15]. This emission rate distribution was created by assimilating943

many methane measurements from technologies with low detection limits (∼ 0.1 - 1.0944

kg/hr) within a probabilistic framework. As with method 3, we only sample from the [0,945

5] kg/hr regime of this distribution. Importantly, this distribution includes emissions946

from both upstream and midstream facilities. As such, it very likely overestimates947
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emissions from just the production facilities in the DJ basin. However, this bias is948

likely mitigated somewhat by the fact that we only sample from the [0, 5] kg/hr regime,949

which is a regime more common to production facilities [15]. Nevertheless, emissions950

in this range do occur on midstream sites, and these emission likely tend to be larger951

than those on production sites, which could bias our estimates high. Furthermore, the952

Denver-Julesburg-specific distribution from Williams et al. is informed by methane953

measurements across the continental United States; it is specific to the DJ basin only954

through facility counts, which are used to extrapolate emissions from the site-level955

to the basin-level. This is an another limitation of this data source for below DMC956

emissions, but a sensitivity study revealed that any potential biases introduced by this957

assumption are minimal [15].958

5. The fifth method samples from one of the Denver-Julesburg-specific emission rate959

distribution from Sherwin et al. [17]. Specifically, we use the Carbon Mapper Summer960

2021 distribution. This distribution was created by assimilating aerial data from the very-961

short-wavelength infrared imaging spectrometer on the Global Airborne Observatory962

(GAO) with simulated emissions from the bottom-up simulation framework described in963

Rutherford et al. [5] to account for below detection threshold emissions on production964

sites and with midstream emissions information from the US Greenhouse Gas Inventory965

to account for below detection threshold emissions on midstream sites. As with the966

previous methods, we only sample from the [0, 5] kg/hr regime of this distribution.967

Because this distribution transitions from the bottom-up simulation tool to the aerial968

data at 73.0 kg/hr [17] for production sites, all of our samples from the distribution969

come from the bottom-up data sources rather than the Carbon Mapper aerial data. As970

with method 4, this distribution includes emissions from both upstream and midstream971

facilities. As such, it very likely overestimates emissions from just the production972

facilities in the DJ basin. However, as discussed for method 4, this bias is likely973

mitigated somewhat by the fact that we only sample from the [0, 5] kg/hr, but could974

contribute to the higher emissions estimates from the statistical model.975

The relationship between below-threshold sampling method, choice of Company L’s DMC,976

and estimated total emissions is shown in Figure 6, with Company L DMC on the horizontal977

axis and estimated methane emissions on a state-wide annual basis on the vertical axis. We978

include the mean annual emissions, in metric tons per year, and 95% confidence intervals (CIs)979

for each below-threshold method listed above. Different below-threshold sampling methods980

are indicated by different colored lines: sampling from a uniform distribution (a known981

overestimate) is indicated by a green line at the top, sampling from a CMS-informed lognormal982

is shown with a blue line toward the middle, sampling from a lognormal fit to the Williams983

data is shown with an orange line, directly sampling from the Sherwin dataset is shown with984

a purple line, and sampling all zeros (a known underestimate) is represented by a red line985

at the bottom. The methods and DMC that will be used in results figures are indicated986

by a dashed black box. While we do see a dependence of estimated emissions on DMC987

for the CMS-informed sampling method, highlighting the need for robust determination of988

DMC in future work, it is much less sensitive to the choice of DMC than sampling from a989

uniform distribution. The estimated emissions using the Williams and Sherwin datasets to990
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inform below-threshold are very similar and show much less dependency than other methods991

on Company L DMC, indicating that these datasets align better with the aerial data. We992

also see the expected behavior of the three below-threshold sampling methods: the known993

underestimate is lower than our best estimates, while the known overestimate is higher.994

Figure 6: Effects of Company L DMC and below-threshold sampling method on estimated
methane emissions for production sites with positive oil or gas production in the state of
Colorado. Company L DMC is on the horizontal axis, with estimated methane emissions in
kg/hr/facility shown on the vertical axis. Different below-threshold sampling methods are
indicated by different colors, and a dashed black box shows the method/DMC combinations
that will be shown in results figures.

Given our estimated distribution above 5 kg/hr, an estimated probability of observing a995

rate in that regime, and an estimated distribution below 5 kg/hr, we can now aggregate our996

emissions distributions into a state-wide mass estimate using the following algorithm:997
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Algorithm 1
1: Calculate n as n_facilities × n_hours
2: Let p̂ be the estimated probability of observing a rate above 5 kg/hr
3: Let b̂, x̂0 be the estimated lognormal parameters from the aerial data
4: Let π(θ̂) be the estimated distribution for below-threshold rates
5: Initialize sum = 0
6: for i = 1, ..., n do
7: Draw P ∼ Bernoulli(p̂)
8: if P = 1 then
9: Draw X ∼ Lognormal(b̂, x̂0)

10: sum = sum + X
11: else
12: Draw X ∼ π(θ̂)
13: sum = sum + X
14: end if
15: end for
16: return sum

At the end of the above algorithm, sum represents the total estimated emitted methane,998

in kg, for n_facilities over the course of n_hours. Note that n_facilities is derived999

from the ONGAEIR 2024 data, excluding facilities that MAES cannot model to ensure the1000

MAES and statistical models are aligned, which results in 9,411 facilities. This excludes some1001

emitting, non-producing facilities, meaning that these results are not representative of the1002

entire state, and as such cannot be directly compared to, for example, satellite emissions1003

estimates. Therefore, we also show results using all facilities in ONGAEIR 2024. Also note1004

that n_hours can be adjusted based on the desired time-frame: for an annualized inventory1005

estimate it is set to 8760, the number of hours in a year. Once again, this segmentation1006

into hour-long time chunks is a discretization tool rather than a judgment on actual event1007

durations, and our method is insensitive to the choice of an hour. To convert the resulting1008

mass to a rate, we can simply divide by n_hours to achieve an estimated rate in kg/hr, which1009

we can also convert to an estimated average facility-level rate by dividing by n_facilities.1010

To account for uncertainty, we perform this process many different times within a Monte Carlo1011

framework. Each time, we resample our aerial rate estimates with replacement to obtain differ-1012

ent estimates for the parameters of a lognormal and the probability of observing a rate above1013

5 kg/hr. We then run the algorithm on every combination of these estimated parameters and1014

probabilities, and the spread of the resulting total estimates gives us an estimate of uncertainty.1015

1016

Once we have aggregated mass/rate estimates, there is an important final adjustment step.1017

Since most of the aerial data was recorded during daytime hours, it captured maintenance1018

events at a higher frequency than they occur when scaling to a time-frame that includes nights.1019

Since maintenance events tend to be accompanied by higher emissions, simply extrapolating1020

rates recorded in the daytime to an entire 24-hours period will result in an overestimation.1021

To account for this, we adjust our final rate estimates down according to the results of a 20251022

study by Barkley, et al. [39], which estimated that an extrapolation of daytime emissions to a1023
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longer time-frame results in about a 25% overestimation (with a sensitivity study indicating1024

a reasonable range of 15%-35%).1025

1026

Given enough data, this methodology can easily be used to generate emissions estimates1027

for subsets of the state of Colorado. For example, to generate an emissions estimate for1028

only the DJ basin, we restrict the aerial data used to rates observed on facilities in the DJ1029

basin, and adjust the n_facilities input to the algorithm to reflect the number of facilities1030

in the DJ. Ideally, we would also subset the below-threshold rate estimates to use only1031

those generated within the desired basin, but this is not possible with our current datasets –1032

the CMS-derived emission estimates all come from the same basin, and both Williams and1033

Sherwin aimed only to estimate distributions in the DJ – so below-threshold distributions1034

remain the same for all subsets of Colorado. We can make the exact same adjustments if we1035

want an estimate for a specific PS class, restricting our aerial data to facilities of that PS class,1036

and updating n_facilities to align with the number of facilities classified as the desired PS1037

class. Note that this requires enough aerial data to adequately fit a lognormal distribution,1038

which is not always the case. Specifically, in this report we fit to three agglomerated basins:1039

DJ, Piceance, and Others, and to only two PS classes: PS2 and PS4, as we do not have1040

sufficient positive aerial rate estimates for the other classes. Also note that while ONGAEIR1041

2024 data are used for facility counts and reference emissions estimates, ONGAEIR 2022 data1042

are used for classifying aerial measurements into basins/PS classes, as the intensive matching1043

process between the aerial and ONGAEIR datasets was performed before 2024 data were1044

available.1045

4 Results and Discussion1046

This section presents a summary of the data collected in the measurement campaign and the1047

results of the two MII processes. A previous version of this report presented results based on1048

the 2022 ONGAEIR dataset; the MII model results given here have been updated to the 20241049

ONGAEIR dataset. Additionally, methane emission data from the measurement campaign is1050

made publicly available in an anonymized dataset, which lists the detected emissions with1051

facility names and locations removed; see Section A.13 of the appendix. This dataset also1052

presents results from the operator cause analysis (see Section 3.2.1), including the sources of1053

emissions when they were identified.1054

4.1 Overall Campaign Data1055

Approximately 94% of production facilities that were operating or partially operating in1056

the 2022 ONGAEIR dataset were scanned by at least one aerial measurement company.1057

The breakdown by PS classification for all considered basins is shown in Figure 7. Refer to1058

Section A.1 of the appendix for similar figures for the DJ, Piceance, and other basins. While1059

the majority of PS1, PS2, and PS4 facilities were scanned by GHGSat, most PS6 facilities1060

were scanned by Insight M. Bridger accounted for the majority of positive emission detections1061

across all classes.1062
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Figure 7: Percentage of facilities in all basins scanned by at least one vendor (top row) and
by each vendor (subsequent rows). The percentage in black indicates the overall proportion
of facilities scanned within each PS class. The bold percentage in parentheses represents the
share of scanned facilities where emissions were detected, while the regular-font percentage
shows the share of scanned facilities with no detected emissions. Percent colors correspond
to the associated PS classes.

Insight M surveyed the largest share of ONGAEIR facilities among the aerial companies,1063

surveying 7,749 sites, representing 68% of all sites in the ONGAEIR dataset. GHGSat1064

scanned about 63% (7,209 sites), while Bridger covered approximately 32% (3,708 sites) of1065

the ONGAEIR facilities. All three companies covered the DJ, Piceance, and other basins.1066

Table 4 indicates the number of total scans broken out by unique facilities and repeat facilities1067

per aerial company.1068

Aerial Company Total Scans Unique Facilities Repeat Facilities
Bridger 7,043 3,708 1,836
GHGSat 10,915 7,209 3,057
Insight M 15,127 7,749 4,296
Campaign Total 33,085 10,771 7,732

Table 4: Summary of facility scans by aerial company

In total, 2,102 emissions events were detected in the COBE measurement campaigns.1069

Emission events are reported differently across the measurement platforms; we summarize1070

here, and more details are given in Section A.2 of the appendix. For Bridger, emissions1071

are reported at the source level. If multiple emissions are detected from the same source1072

within a single day, they are averaged to generate a single source-level emission rate for that1073
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day. A single facility may have multiple emission sources, and each source is treated as1074

a separate emission event in the dataset. Insight M reports emissions at the facility level.1075

GHGSat primarily reports emissions at the facility level, although in a few cases, multiple1076

clearly distinguishable plumes were detected and reported as separate emission events. In1077

cases where GHGSat or Insight M detected facility-level emissions more than once in a single1078

day, each emission event is retained as a separate entry in the dataset. See Figure 8 for the1079

number of emission events by facility class and aircraft company.1080

Figure 8: Summary of count of emission detections by PS and aircraft company.

At the facility level, Bridger reported more facilities with positive emissions than the other1081

two companies, which can be explained by Bridger’s lower detection limits. Facility-level1082

detected emission rates varied by company and basin. When scanned by Bridger, 88.6% of1083

surveyed facilities had no emission detected in the DJ basin, 69.1% in the Piceance basin,1084

and 95.3% in other basins. More facilities were reported as having no detected emissions1085

by GHGSat with 99.6% in the DJ, 99.7% in the Piceance basin, and 97.8% in other basins.1086

Most of the aerial measurements conducted by Insight M resulted in no emissions detected,1087

accounting for 99.6% of surveyed facilities in the DJ basin, 99.3% Piceance basin, and 99.4%1088

in other basins. Summary statistics of facility-level detected emission rates in three basins by1089

vendors is shown in Table 5.1090

4.2 Emission Factors1091

Emission factors incorporating the aerial measurements were developed from the MAES MII1092

results. Emission categories were disaggregated to align with Bridger’s major equipment1093

groups: flares, heaters, compressors, separators, and a “miscellaneous” category. Each1094

emission category encompasses multiple emission sources. For each facility within a given PS1095

class and equipment type, total emissions were aggregated across each unit of that equipment1096

type for each MC iteration. The summed values that were positive were then used to construct1097

the distribution of annual emissions for that facility-equipment-PS combination, giving the1098

equipment group’s emission factor. The distributions for each PS and equipment type are1099

shown in Figure 9 as violin plots, with embedded mini box plots indicating the median and1100
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Table 5: Summary of facility-level detected emission rates measured in kg/hr by aerial
measurement company and basin.

Company Basin Median Average Min Max Range

Bridger
DJ 2.13 5.33 0.203 189 188
Piceance 1.53 3.96 0.135 81.9 81.7
Other 2.09 5.39 0.203 43.7 43.5

GHGSat
DJ 105 118 34 248 214
Piceance 24 57.3 10 157 147
Other 29 46.5 8 285 277

Insight M
DJ 36 113 7 353 346
Piceance 43 49.4 3 143 140
Other 17 33 3 114 111

interquartile range. The distributions tend to be heavily skewed to the right. See Table 17 in1101

Section A.11 of the appendix for the mean and quartiles.1102

Figure 9: The distributions for each PS and equipment type are shown as box plots.

The emission factor for PS1 compressors is higher compared to other PS classes. This1103

difference can be attributed to the use of gas lift systems within PS1, which involve larger1104

horsepower engines. This category also had the highest number of 4-stroke-lean-burn (4SLB)1105

engines, which are known to emit more than 4-stroke-rich-burn (4SRB) engines: according to1106

AP-42 emission factors, 4SLB engines have an emission factor 5.4 times higher than 4SRB1107

engines [34].1108

35



4.3 MAES Model MII Results1109

The MAES MII model produces emission estimates informed by aerial measurements, which1110

we compare to the MAES inventory model and to ONGAEIR. Emissions data in this section1111

are taken from the 2024 ONGAEIR dataset, which became available during the writing of this1112

report. A total of 9,411 sites were modeled in MAES, roughly 81% of the 11,681 upstream1113

sites reported in ONGAEIR that were operating of partially operating. For discussion of the1114

unmodeled sites, see Sections A.15 and A.16 of the appendix. We begin with comparisons1115

that exclude maintenance-related emissions, as these are not modeled in MAES. As described1116

in Figure 3 and Section 3.2, the first step in the MAES MII process is to compare the1117

inventory model to the reported inventory (ONGAEIR, adjusted by removing those emission1118

categories not modeled in MAES – see Section 3.2). The MAES inventory model total is1119

27,181 mt/y compared to the adjusted ONGAEIR total of 26,415 mt/y (with maintenance1120

equipment emissions of 2,339 mt/y excluded). The MAES MII model total is 36,597 mt/y,1121

which indicates an increase of 52% from the adjusted ONGAEIR, attributable to failure1122

events.1123

These results are summarized in Figures 10 and 11. The brackets in the figures show the1124

95% confidence intervals for the distributions of values across the multiple MC iterations in1125

the MAES simulations.1126

Since MAES does not estimate emissions from maintenance events, to get a total estimate1127

for Colorado, the total ONGAEIR emissions from maintenance, 2,339 mt/y, were added1128

to the MAES MII. These maintenance-related emissions increase emissions by 9% in the1129

ONGAEIR inventory and by 6% in the MAES MII model. Additionally, emissions from1130

dehydrators, NR internal combustion engines, and pneumatic pumps were not modeled and1131

are added to both the ONGAEIR and MAES model totals. The total MAES MII estimate1132

plus ONGAEIR maintenance emissions is 38,936 mt/y. This leads to a state-wide ratio of1133

1.47 when compared to the ONGAEIR total of 26,415 mt/y. When broken down by basin,1134

emissions totals due to failure-related events increase by 58% in the DJ Basin, 27% in the1135

Piceance Basin, and 53% across all other basins.1136

The following sections summarize the MAES MII model results by equipment type, basin,1137

and PS class. For these more detailed analyses, maintenance events are again excluded to1138

provide direct comparisons of the types of emissions simulated by MAES.1139

4.3.1 Comparison by equipment1140

An important step in the MAES process is to evaluate whether the model accurately represents1141

emissions at the equipment level. To do this, emissions from the MAES inventory are1142

compared to the adjusted ONGAEIR data, grouped by equipment category. Figure 101143

shows that the MAES inventory and adjusted ONGAEIR agree by equipment categories1144

with a few exceptions, discussed below. One of the largest emission sources in both the1145

adjusted ONGAEIR and the MAES model is pneumatic controllers. In the MAES model,1146

68% of emissions attributed to pneumatic controllers are associated with separator pneumatic1147

emissions. The next largest contributors in both the adjusted ONGAEIR and the MAES1148

model are fugitive emissions and compressor-related sources.1149
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Figure 10: MAES MII and inventory results: state-wide annual emissions by equipment type.
Adjusted ONGAEIR and the MAES inventory model are compared to evaluate how MAES
models normal emissions, while the MAES MII model shows the increased emissions resulting
from incorporating aircraft measurements into the model.

Another difference between ONGAEIR and MAES results relates to compressor emissions.1150

As noted in Section 3, one adjustment was applied to ONGAEIR to enable a consistent1151

comparison: when operators used the Subpart C emission factor for combustion, those values1152

were scaled to the updated Subpart W emission factor, increasing the ONGAEIR estimate1153

by 2,163 mt/y. In addition, the 2024 ONGAEIR reporting requirements did not include1154

crankcase vent emissions, which are incorporated in the MAES model. When comparing1155

ONGAEIR compressor totals to MAES (inventory) combustion and seal-vent estimates, the1156

two agree within 13%.1157

The fugitive emissions category differs between models: in the inventory-based approach,1158

emissions include all component leaks and other miscellaneous leaks, whereas the MII model1159

additionally incorporates large emitters from the wellpad, which are informed by miscellaneous1160

emitter data derived from aircraft observations. This highlights that the majority of the1161

aircraft observations were from fugitive emissions and they are likely underreported in1162

ONGAEIR.1163

Tank emissions in MAES inventory were aligned to match ONGAEIR emissions, and in1164

the MAES MII model, tank emissions were informed by aerial emissions. It could be that1165

tank emissions are low and therefore were missed by the aerial methods due to their detection1166

limits. Tank emissions in MAES include contributions from both controlled and uncontrolled1167

tanks, modeled using the traditional emission factor (EF) times activity factor (AF) approach.1168

As previously noted, these EFs were developed based on COBE campaign measurements for1169

emission rates exceeding 2 kg/hr. Separate EFs for controlled and uncontrolled tanks may1170

capture emissions from both routine operations (e.g., tank flashing) and upset conditions1171

(e.g., overpressure events, dump valve releases). Emissions from controlled tanks are likely1172

underestimated, as MAES currently simulates only direct tank venting. In reality, overpressure1173

events may also lead to excess gas being routed to the flare, depending on the volume of gas1174
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released upstream during the upset. This may increase combustion slip from the flare due to1175

higher gas throughput. The modeling team is actively working to resolve this limitation.1176

4.3.2 Results by basin and prototypical site class1177

Figure 11 presents the results of the MAES inventory and MII model as stacked bar charts,1178

with emissions aggregated by equipment type. These are compared to the ONGAEIR reported1179

emissions for each basin and PS, all expressed in metric tons per year. The distinguished1180

equipment types from the MAES results include several different emission sources, as follows:1181

• Compressor-related emission sources in the MAES model include: compressor blowdown1182

events; blowdown vent leaks; component leaks; pneumatic emissions; rod packing1183

emissions from large emitters (included only in the MII model); rod packing venting1184

during non-operating depressurized (NOD), non-operating pressurized (NOP), and1185

normal operating (OP) conditions; crankcase emissions; and emissions from compressor1186

driver exhaust.1187

• Flare emissions are attributed to component leaks, flared gas during malfunction and1188

normal operations, and unflared gas.1189

• Heater emissions originate from both operating and malfunctioning heaters.1190

• Fugitive emissions include leaks from miscellaneous equipment, pneumatic emissions1191

from miscellaneous sources, and, in the MII model, wellpad large emitters.1192

• Separator emissions consist of component leaks and pneumatic emissions.1193

• Tank emissions include component leaks, pneumatic, tank flash and overpressure venting1194

(the latter included only in the MII model).1195

• Wellhead emissions include component leaks and pneumatic emissions at the wellhead.1196

• Other category are emissions that are in ONGAEIR that are not modeled in MAES and1197

therefore are added onto the MAES results. This includes emissions from dehydrators,1198

NR internal combustion, and pneumatic pumps.1199

In the ONGAEIR hatched bar in Figure 11, pneumatics are shown as a standalone category.1200

In the MAES results, however, pneumatic emissions are incorporated into their respective1201

equipment groups (compressors, separators, wellheads, and tanks). Most pneumatic emissions1202

in MAES fall within the separators category.1203
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Figure 11: MAES inventory and MII model results by basin and PS compared to reported
ONGAEIR values. ONGAEIR (without maintenance) totals are the hatched bars, the MAES
inventory (hatched dots), and MII model, all broken out by equipment type. The ONGAEIR
maintenance total (dark grey) is added to all estimates. All estimates are shown as annual
estimates in metric tons per year.

The ratios between the MAES MII estimates and ONGAEIR totals vary across basins1204

and PS classes, ranging from 1.22 to 2.44. These ratios are calculated by dividing the total1205

MAES MII emissions by the total ONGAEIR emissions for each subset of facilities. As1206

shown in Table 1, the Piceance Basin is composed primarily of PS2 facilities and has the1207

lowest number of PS1 facilities. Only 99 stationary natural gas engines were reported in1208

the Piceance Basin in the 2024 ONGAEIR dataset, likely contributing to the comparatively1209

low emissions from the MAES inventory observed in this basin. In contrast, the DJ Basin1210

contains the highest number of compressors and is predominantly composed of PS4 facilities,1211

leading to higher MAES annual emissions. Statewide, fugitive emissions show the largest1212

increase between ONGAEIR and the MII, increasing by approximately 6,000 mt/y (an 80%1213

increase). This highlights that in ONGAEIR, fugitive emissions are the category that is the1214

most under-reported.1215

Since MAES simulates duration and rate for each emission, we also summarize the MII1216

model results by emission rate. Figure 12 is a stacked bar graph showing how three ranges of1217

emission rates contributed to the total amount emitted; results are averaged to an hourly1218

emission rate per site. The distribution of rates suggests that emissions in Colorado are1219

dominated by relatively small emission rates. The figure also shows that PS1 sites have the1220

highest average emission rate, which is expected given the use of gas-lift compression. There1221

are fewer than 300 of these sites in the state, so they contribute little to the statewide total.1222

Overall, the figure highlights that the average production facility in Colorado emits very little1223

methane, typically less than 1 kg/h. For a more detailed view of the emissions distributions1224

estimated by MAES, Section A.7 of the appendix shows CDFs of emission rates.1225
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Figure 12: Average site MAES MII model results by basin and PS divided into the contribu-
tions from rates above 100 kg/h (dark blue), from rates between 5 and 100 kg/h (blue), and
from rates less than 5 kg/h (light blue). The large rates of PS1 are attributed to gas lifts.

4.4 Statistical Model MBI Results1226

The results of the statistical MBI model yield emissions estimates for the state of Colorado1227

(specifically for upstream facilities in the ONGAEIR database), as well as for certain subsets:1228

facilities in the DJ basin, Piceance basin, and other basins, and facilities classified as PS21229

and PS4. Note that these results were calculated using ONGAEIR 2024 facility counts and1230

are compared against emissions reported in ONGAEIR 2024, but ONGAEIR 2022 data1231

are used to classify aerial measurements into basins/PS classes. For ease of comparison1232

between subsets, we report estimated emissions in units of kg on a per-facility, per-hour1233

basis. ONGAEIR-reported emissions are also converted into the same units by taking the1234

total amount of methane emissions reported in ONGAEIR (or for the relevant subset of1235

ONGAEIR), converting these to kilograms, normalizing by the number of facilities, and1236

dividing by the number of hours in a year. A comparison of measurement-derived rate1237

estimates with ONGAEIR-reported rate estimates is shown in Figure 13, with estimates1238

provided both on the state level and for the subsets described above. An alternate version is1239

provided in Figure 14 in units of metric tons per year, and on a state/basin level instead of1240

on a facility level, for direct comparison to MAES estimates.1241
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Figure 13: Comparison of measurement-derived rate estimates with those reported in
ONGAEIR. Facility counts and ONGAEIR emissions are from ONGAEIR 2024 data, ex-
cluding facilities that MAES cannot model. The horizontal axis indicates the subset that the
corresponding bars represent, with each subset containing four bars: 3 that represent our
estimates using different below-threshold sampling methods (CMS, Williams, and Sherwin,
respectively), and one grey hatched bar that represents the ONGAEIR-reported rate. The
measurement-derived rates are further divided into the contribution from rates above 100
kg/hr, from rates between 5 and 100 kg/hr, and from rates less than 5 kg/hr. The 95%
confidence interval for the measurement-derived rates is represented by a black interval at
the top of the measurement-derived rate estimates.

Figure 13 shows that the measurement-derived emissions estimates are consistently higher1242

than those reported in ONGAEIR, with overall ratios of 5.09, 3.57, and 3.30 using the1243

CMS-based, Williams, and Sherwin distributions, respectively, meaning that the average1244

per-facility measurement-derived rate is approximately 3 to 5 times as large as the rate1245

reported in ONGAEIR. These ratios vary across basins, with a range of 3.23 to 5.64 when1246

using a CMS-informed distribution, and a range of 2.19 to 3.90 when using the other two1247

distributions. The ratio differs notably for the two PS classes, with PS2 showing much higher1248

ratios between 4.54 and 7.87, whereas PS4 shows lower ratios between 2.09 and 3.27. This1249

difference in ratios is primarily due to the much lower ONGAEIR-reported rate present in the1250

PS2 class. Note that results for PS1 and PS6 are not shown here as there were not enough1251

positive detections available to reliably model these classes. See Table 6 for ratios for every1252

below-threshold distribution and subset combination.1253

1254
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CMS Williams Sherwin
All Basins 5.09 3.57 3.30
DJ Basin 3.23 2.35 2.19

Piceance Basin 5.46 3.90 3.62
Other Basins 5.64 3.38 2.98

PS2 7.87 5.04 4.54
PS4 3.27 2.27 2.09

Table 6: Ratios between estimated emissions using different below-threshold sampling dis-
tributions and ONGAEIR reported emissions for Colorado and subsets of Colorado. For
example, 5.09 in the upper left cell of the table indicates that estimated emissions when using
CMS-informed rate estimates were 5.09 times higher than ONGAEIR-reported emissions.

Also of note is the distribution of the contributions of different rate magnitudes within the1255

measurement-derived rate estimates. We see that across the board, below-threshold rates (i.e.1256

below 5 kg/h) contribute a large portion of emissions, although the proportion varies between1257

sampling methods, highlighting the importance of developing robust methods for estimating1258

the distribution of these below-threshold emissions in future work. We also see that rates1259

above 100 kg/hr contribute approximately 1/5 to 1/3 of the emissions for above-threshold1260

rates, varying slightly across subsets of Colorado. Tables corresponding to these results can1261

be found in the Appendix, Tables 8 through 16: one table per below-threshold sampling1262

distribution.1263

Figure 14: Analagous to Figure 13 but on the state/basin level instead of on the facility level
and with vertical axis units of metric tons per year.
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Figure 14 shows the same results as Figure 13, but scaled according to the number of sites1264

in each subset. Note that these results are based on a filtered ONGAEIR dataset containing1265

only facilities that can be modeled by MAES, and as such are not representative of the1266

entire state or basins: there exist emitting, non-producing facilities in Colorado that are not1267

captured here. We see that each the Pieceance basin contributes more emissions than either1268

of the other two agglomerated basins, with other basins contributing the least, and that the1269

distribution of sizes of rates within these contributions differs notably. For example, the1270

emissions from the DJ and Piceance basins are made up of more rates above 5 kg/hr and1271

above 100 kg/hr compared to those from other basins. Tables corresponding to these results1272

can be found in the Appendix, Tables 11 through 13: one table per below-threshold sampling1273

method.1274

These results (and those shown in this figure) are in the same units as, and can be directly1275

compared to, those in Figure 11. A version of Figure 14 normalized by natural gas and oil1276

production can be found in Section A.5 of the appendix.1277

4.4.1 Results using all ONGAEIR facilities1278

Previous figures have used facility counts and reference emissions from the ONGAEIR 20241279

dataset, excluding facilities that cannot be modeled by MAES. Here, we present results using1280

the full ONGAEIR 2024 dataset. Note that we do not individually model these previously1281

excluded facilities; rather, we increase the facility counts accordingly and add their reported1282

emissions into the ONGAEIR-reported total. Figure 15 shows these results in kg on a per-1283

facility, per-hour basis, while Figure 16 shows them in metric tons per year on a state/basin1284

level.1285

Figure 15: Comparison of measurement-derived facility-level emission rate estimates with
those reported in ONGAEIR. Facility counts and ONGAEIR emissions are from the full
ONGAEIR 2024 dataset, including facilities that MAES cannot model.
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Figure 16: Analagous to Figure 15 but on the state/basin level instead of on the facility level
and with vertical axis units of metric tons per year.

Figures 15 and 16 show somewhat similar results to their analogues using only the1286

ONGAEIR facilities that MAES can model, but with some key differences. The total1287

emissions estimates are notably larger in Figure 16 than in Figure 14, since 2,270 more1288

facilities are being modeled. The ratios, shown using all ONGAEIR 2024 data in Table 7, also1289

change notably. Overall ratios increased, indicating that the facilities unable to be modeled1290

by MAES had lower emissions on average. However, this is not the case for all subsets: for1291

example, ratios in the Piceance basin decreased when including all ONGAEIR 2024 facilities,1292

meaning that the facilities excluded from the Piceance had higher emissions than the other1293

facilities in the Piceance. For some other subsets, for example PS2, ratios did not change1294

significantly.1295

CMS Williams Sherwin
All Basins 5.85 4.11 3.81
DJ Basin 3.94 2.86 2.67

Piceance Basin 5.04 3.57 3.31
Other Basins 7.06 4.23 3.74

PS2 7.70 4.90 4.41
PS4 3.09 2.14 1.98

Table 7: Ratios between estimated emissions using different below-threshold sampling dis-
tributions and ONGAEIR reported emissions for Colorado and subsets of Colorado. These
ratios use facility counts and reference emissions from the full ONGAEIR 2024 dataset.
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4.5 Influence of sites not modeled in MAES1296

Since MAES was unable to model a proportion of ONGAEIR facilities (due to a lack of1297

information), we perform a comparison between the ONGAEIR-reported emissions from1298

modeled and unmodeled facilities to examine the differences between these sites. Figure 171299

shows the results of this comparison for the DJ Basin; figures for other subsets, as well as for1300

all basins, can be found in the Appendix, section A.16.1301

Figure 17b shows the mean emissions reported in ONGAEIR 2024 of all facilities in the1302

DJ Basin, as well as the mean emissions of those modeled in MAES. The distributions1303

shown are bootstrapped distributions for these means, found by resampling the data 50,0001304

times. Using the bootstrapped distributions, the probability for the basin mean exceeding1305

the MAES-modeled mean was estimated to be p = .022. This suggests a significant difference1306

in reported emissions, with MAES-modeled sites reporting higher on average.1307

Figure 17a shows the distribution of ratios between the statistical model’s estimated1308

emissions and ONGAEIR’s reported emissions for different random subsamples of the DJ1309

Basin. In the DJ, 2,068 out of 2,741 were able to be modeled by MAES. Therefore, an1310

estimate for the DJ Basin is calculated using the statistical model (specifically using the1311

Williams distribution for below-threshold rates) assuming 2,068 sites, and then for each1312

repetition, 2,068 random sites are selected to calculate the ONGAEIR-reported emissions,1313

and a ratio between the two is calculated. The distribution of 50,000 of these ratios is shown1314

in the blue histogram, with the ratio using all 2,741 sites shown as a black dashed line1315

and the ratio using the specific 2,068 sites modeled by MAES shown as a red dashed line.1316

The ratio using the MAES-modeled sites is lower than the ratios from any of the randomly1317

sampled subsets of the same size. This indicates that in terms of the effect on the statistical1318

model’s ratio (which is a function of ONGAEIR-reported emissions), the unmodeled sites are1319

significantly different from the sites as a whole in the DJ Basin.1320

For the MAES model, the effect of the unmolded sites is less clear. In MAES, reported1321

emissions and modeled emissions are not directly correlated: because MAES relies on1322

mechanistic models to estimate emissions from fluid flows and equipment states, we cannot1323

determine how the differences in reported emissions above would influence modeled emissions.1324

Therefore the effect of the unmodeled sites on the emission ratio produced by MAES cannot1325

be determined, as the effect on the numerator is unknown.1326
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(a) Distribution of statistical MBI ratios for the
DJ Basin resulting from random samples of facil-
ities of the same size as the number of facilities
modeled by MAES. The ratio using all sites is
shown with a dashed black line, and the ratio
using the MAES-modeled sites is shown with a
dashed red line.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for the DJ basin, shown
for both all sites and the subset that were mod-
eled in MAES. The blue distribution is a boot-
strapped distribution for the mean for the whole
basin, and similarly the orange distribution is
for the subset modeled in MAES. The proba-
bility for the basin mean exceeding the MAES-
modeled mean was estimated to be p = .022.

Figure 17: Subsampling study results for the DJ Basin.

5 Cohesive Analysis and Future Work1327

COBE’s project design has enabled the development of large-scale, high-quality MIIs. Novel1328

features of the project include the largest dataset of upstream facilities collected via aerial1329

measurements in Colorado, contracting with multiple aerial companies, a blend of participating1330

and non-participating operators, and development of two models that use the same underlying1331

measurement data. This section will take a step back from the detailed methods and results1332

of the report to consider how the project worked as a whole. We will discuss strengths and1333

suggestions for changes and improvements for future campaigns similar in scope conducted1334

by the state or other entities, including opportunities for future work.1335

5.1 Measurements1336

COBE funded three aerial platforms, Bridger, GHGSat, and Insight M, to conduct the1337

project’s measurements. This represents the first time that multiple aerial imagers were1338

deployed on such a large scale. In lieu of different information, APCD and the project team1339

agreed to provide equal funds to each company. Each company has different business models1340

and flight capabilities per dollar, and as expected each company flew different numbers of1341

unique and repeated facilities (Table 4).1342

The key differences in technological capabilities with respect to the way the modeling1343

team used the data were detection limits, aerial imagery quality, and total facility coverage1344

per aerial company. As the modeling team used two different modeling approaches (the1345

METEC MAES model and the CSM statistical model), we will break out our discussion for1346

each model, as needed.1347
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• Detection limits: Bridger had the publicly reported lowest lower detection limit (LDL)1348

of the three aerial companies. The majority of emissions detected in the aerial campaigns1349

were detected by Bridger (Figure 7), indicating that the majority of emitters in Colorado1350

are relatively small. Approximately 93% of the emissions detected by Bridger that were1351

categorized into a MAES failure type were below 10 kg/hr, indicating that many upset1352

conditions are relatively small emitters.1353

• Aerial imagery quality & data reporting: The CSM statistical model did not use1354

aerial imagery as no emission classification was used in their methods. The MAES1355

model used the aerial imagery extensively for emissions classification purposes, as1356

MAES is intended to model emissions at the emitter level with as much specificity as1357

possible. The imagery was shared with participating operators to help operators narrow1358

down potential emission causes. The METEC team used the imagery to assist with1359

further validation of operator notes. Bridger had the highest-quality aerial imagery at1360

the time of the aerial campaigns and was most often able to assign emissions down1361

to equipment level (only 15% of detections were assigned to an “other” equipment1362

category). GHGSat and Insight M did not include equipment localization in their1363

detections, although participating operators were able to determine the emitter down1364

to the equipment level in some of their cause analyses.1365

• Total facility coverage: GHGSat and Insight M were able to scan significantly higher1366

numbers of facilities than Bridger. As a result, GHGSat and Insight M were more1367

likely to catch large, rare emitters, and this was borne out in the data: Table 5 shows1368

that for each scanned region, GHGSat and Insight M consistently saw larger emissions.1369

Additionally, GHGSat saw an emission rate of over 3,000 kg/hr on a facility that did1370

not report to ONGAEIR (Section A.10).1371

In addition to these considerations above, a key output of the CSM’s statistical model is1372

the prediction that well over half of total emissions in Colorado are from <5 kg/hr emitters.1373

There are two competing factors to consider here:1374

• The CMS-derived emissions distribution used was likely not representative of true1375

<5 kg/hr emissions rates for Colorado. The CMS dataset was limited in statistical1376

representation in number (5 facilities), location (only from one basin), and facility1377

representation. To attempt to address this limitation for COBE, the Mines team1378

updated their analysis to consider the Williams and Sherwin papers. The results of1379

using these two studies led to lower predicted contributions from <5 kg/hr emissions,1380

indicating that the original Mines model using CMS-derived rates may be overestimating1381

this contribution. In COBE-2, additional CMS data is anticipated to be collected and1382

used to derive rate estimates that better represent <5 kg/hr emissions in Colorado1383

across site types.1384

• ONGAEIR may be under-estimating (under-reporting) the smallest (< 5 kg/hr) emis-1385

sions (Figure 13, 14). The METEC team chose to use ONGAEIR as MAES’s base for1386

reported emissions and classified most aerial emission detects that align with reported1387

emissions as already within the inventory. This assumption means that the METEC1388
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team may have discarded emissions detections that were not actually reported to1389

ONGAEIR. This is a limitation in general of the MAES approach - emissions may be1390

mis-classified as being in the inventory if the emission is within the range of expected,1391

reported emissions. To this point, COBE-2 will include working on full emission range1392

distribution comparisons to determine if there are emission ranges detected via aerial1393

that are currently classified as “in the inventory” that may be partially “out of the1394

inventory”. This increase in sophistication in analysis can be carried forward into all1395

other MII work for all measurement types, including continuous monitors and satellites.1396

The result of these two factors is that the statistical model’s methods may be over-estimating1397

OR under-estimating < 5 kg/hr emissions while the MAES model may be underestimating1398

them.1399

To try to better capture < 5 kg/hr emitters, a future version of the campaign should1400

consider including a representative sampling plan of CMS. Many Colorado operators, including1401

COBE participants, already deploy monitors at select sites. Due to time constraint within1402

COBE, we did not attempt to request data from the majority of these deployed monitors.1403

A limitation of requesting data from participating operators is that it would be limited to1404

participating operators, as non-participating operators would presumably not be willing to1405

share their CMS with the science team. We do not have sufficient evidence as to whether1406

limiting additional data collection for the smallest emitters would be skewed when only using1407

participating operators, given that the DMCs of all vendors was 5 kg and above. However, it1408

is clear that understanding < 5 kg/hr emissions and how they relate to ONGAEIR reporting1409

is a critical next step for developing accurate and defensible MIIs.1410

Additionally, even though 5 kg/hr was applied as the DMC for Company L facility-level1411

emissions, the majority of Company L’s detections were <5 kg/hr, and these measurements1412

were over a much larger number of facilities and wider range of facility types. Future1413

work is needed to assess the two datasets to each other to gain further insights within the1414

measurements already available. This assessment will also include determining if clues exist1415

for differences between participating and non-participating operators at the lowest emission1416

rates.1417

Viewing these trade-offs for each aerial company along with supplemental CMS-derived1418

emissions rates holistically indicates that the combination of a higher-resolution aerial data1419

source (here, Bridger), a lower-resolution aerial data source (here, GHGSat, Insight M), and1420

statistically representative CMS-derived emission rates could provide the strongest stack of1421

data currently available. Both aerial data sources still have the necessary ability to scan both1422

participating and non-participating operators. The higher-resolution aerial data source could1423

be an aerial or satellite measurement method: the largest emissions detected by GHGSat and1424

Insight M exceeded 100 kg/hr (Table 5), which tends to be within the lower detection limits1425

of current satellite technology. There would be greater risk that the near-100 kg/hr detections1426

might be missed by satellite, however. Given that the majority of emissions were detected by1427

Bridger (Figure 8), the higher-resolution aerial data source is essential in a relatively clean1428

location, such as Colorado, where mitigation opportunities lie more within these relatively1429

smaller emitters. And the CSM results clearly indicate that more investigation is needed1430

to determine the significance of < 5 kg/hr emitters to total emissions within the state of1431

Colorado.1432
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5.2 Operator Participation1433

It is important to determine whether non-participating operators “look” like participating1434

operators in large studies like COBE in terms of emissions and facility profiles. This1435

question is still an open area of research for the COBE modeling team. We developed CDFs1436

of participating and non-participating operators, using the combined aerial distribution1437

technique described in A.8. Nondetections are included in these distributions at an emission1438

rate of 0 kg/hr. Minor differences are noted between the distributions but this is an area of1439

additional research that the modeling team will continue to pursue.1440

Figure 18: Cumulative distribution functions (CDFs) of participating and non-participating
operators. The right plot shows emission rates on a log scale for visual clarity.

5.3 Model Limitations1441

5.3.1 MAES1442

A key limitation of the MAES MII approach is the reliance on inventory data to determine1443

facilities’ normal operating conditions, as noted above. The initial MAES inventory model1444

assumes emissions reported in the inventory provide a reasonably accurate estimate of the1445

emissions from normal conditions, to which unreported emissions will be added. If the1446

inventory underestimates normal emissions, as the prevalence of small emission rates in1447

the CSM model suggests it might, then the final MAES MII model likely will as well. The1448

classification of emissions due to failure types (Section 3.2.2) is also influenced by the inventory,1449

since the MAES-simulated emissions against which observed emissions are compared is largely1450

based on the inventory. Separately, the detailed facility information required by MAES,1451

including equipment types and counts, also depends on the accuracy of the inventory. Some1452

of this dependence may be relieved by improving aircraft measurement technologies – for1453

instance, using a company like Bridger that can provide estimated facility equipment counts –1454

but the inventory data remains an essential part of this method.1455

In particular, this study relied on the most recent publicly available ONGAEIR inventory1456

dataset from 2022 for planning and initial analysis, and only updated results to the 20241457
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ONGAEIR dataset when it became available. The sampling plan for aerial measurements1458

was based on the 2022 dataset, which means that facilities constructed after 2022 were not1459

included, and facilities that ceased operation after 2022 were still scanned due to the absence1460

of updated facility-level information. The classification of emissions described in Section 3.2.21461

was carried out using MAES inventory models based on 2022 ONGAEIR data; as this is a1462

manual process, it was not repeated after the 2024 ONGAEIR data became available due1463

to time constraints. Key variables affecting model estimates that are likely to have shifted1464

between 2022 and 2024 include oil and gas production volumes, facility equipment counts, and1465

equipment operating hours. While the METEC team recognizes that ONGAEIR represents1466

the most comprehensive emissions inventory currently available for Colorado, it remains1467

subject to reporting gaps and temporal limitations.1468

A further limitation of the MAES model is its reliance on manual classification of emissions1469

into predefined failure types. This process is not automated and requires human interpretation1470

of aerial imagery for each detection to assign a probability to the emission source location.1471

While this introduces a degree of subjectivity, it ensured a consistent and standardized1472

approach was applied across all measurement solutions. This classification process then1473

influences the pLeak value and may affect the extent to which each traditionally modeled1474

emission source is impacted. Furthermore, in the current implementation, MAES uses these1475

pLeak inputs as fixed values without accounting for uncertainty, thereby not accounting for1476

some of the variability that would be expected at an actual site. A sensitivity study was1477

conducted on the pLeak value using the MII results based on the 2022 ONGAEIR data. It1478

was found that multiplying pLeak values by .5 and by 2 resulted in a 24% decrease and1479

a 26% increase respectively to the final MAES MII model total emissions (maintenance1480

excluded). Multiplying pLeak values by .1 and 10 resulted in a 36% decrease and a 77%1481

increase respectively.1482

Additional limitations of the MAES model include the exclusion of pre-production and1483

maintenance-related emissions, as well as an incomplete representation of controlled tanks.1484

While MAES estimates direct tank emissions, it does not account for excess gas routed to the1485

flare during overpressure events. The modeling team is actively working on these limitations,1486

and the development of MAES continues as separate work by METEC.1487

5.3.2 Statistical model1488

The statistical model does not currently account for frequency and duration. Instead,1489

emissions are collapsed into a single point in time, and the ergodic assumption is used to1490

translate these emissions into a distribution over time. However, despite the frequent use1491

of the ergodic assumption in methane emissions literature, more investigation is needed to1492

verify how well this assumption is satisfied in this context.1493

Another key limitation of the statistical model comes from the estimation of a below-1494

threshold distribution. Currently, the estimates of this distribution come either from pre-1495

existing literature that aims to characterize the DJ basin rather than the entire state, or1496

from using CMS-derived inference from only 5 facilities, all owned by the same operator1497

and all in the Piceance Basin. Not having had the opportunity to conduct further testing1498

of any such assumption, it would be ludicrous to assume that rates on these sites are1499

representative of the entire state. Regardless, these methods are currently the best estimates1500
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of emissions below Company L’s DMC of 5 kg/hr available for this study without relying on1501

a bottom-up inventory or an emission simulation tool. This limitation could be addressed1502

in the future with more by conducting more CMS-derived inference on a larger number of1503

facilities across different operators and basins, as discussed above. The lack of a robust1504

method for estimating Company L’s DMC is another limitation of this model, although a1505

sensitivity analysis showed only a minor dependency on this DMC when sampling from either1506

a CMS-informed distribution or those from the literature for below-threshold rates.1507

5.3.3 Comparison and directions for future work1508

It is the METEC and CSM science team’s opinion that the most important next step is1509

to determine why the two models have such different results. As an initial direction, when1510

comparing the two models, the <5 kg/hr emissions stand out as a key discrepancy. As1511

discussed above, the MAES MII approach relies on current inventory activity data, which1512

may be inaccurate, to estimate emissions in this range. On the other hand, the statistical1513

MBI approach estimates these emissions based either on a limited data source, the small1514

sample of CMS-derived rates, or preexisting distributions with their own limitations. More1515

comprehensive data on this range of emission rates will improve both approaches and help1516

reduce the uncertainty in future MIIs. In particular, producing representative CMS-derived1517

rate estimates as part of future measurement campaigns will greatly improve data on <51518

kg/hr emissions. A challenge will lie in understanding how these smallest emissions compare1519

to ONGAEIR reporting, as the smallest emissions will often overlap in size with the reported1520

emissions.1521

For future work, there are opportunities to continue adjusting the two models to move1522

closer to consensus. MAES has significant value in being able to predict source-level emissions,1523

rather than facility-level, and can also be used for other direct MII reporting needs, such as1524

the Oil and Gas Methane Partnership (OGMP2.0) voluntary reporting program. In future1525

iterations of this work, working to additionally inform MAES in the <5 kg/h category may1526

bring the two models into closer agreement. However, MAES is limited by its inputs and1527

modules: if a process is not correctly modeled or is missing in MAES, it will lead to incorrect1528

or missing emissions estimates. Since MAES relies on ONGAEIR for the inputs, when key1529

facility information is missing from ONGAEIR, MAES cannot model these sites. The team1530

is working with CDPHE to improve future iterations of ONGAEIR so all facility information1531

is available.1532

The CSM statistical model alternatively considers all available measurement data but1533

assumes that the measurement data is statistically representative and ergodic. It also relied1534

on a highly limited data set of CMS-derived rates for emissions below 5 kg/hr. Future1535

iterations must take into account a better representative sample of CMS-derived rates, given1536

that well over half of predicted total emissions from the statistical model are <5 kg/hr.1537

METEC and CSM will continue to collaborate in the COBE-2 project to develop peer-1538

reviewed papers that will be published and communicated to the CDPHE APCD team for1539

dissemination. As appropriate, the science team will likely issue an update to this report1540

noting any major findings or updates to results.1541
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6 Summary1542

The 2024-2025 COBE project was contracted between CDPHE’s APCD and CSU’s METEC1543

to develop estimates of total emissions and ratios between these estimates and reported1544

emissions (via ONGAEIR) to assist with the 2026 Colorado GHG Intensity Verification1545

Rule. COBE was intended to obtain aerial emission detections for the entire state to develop1546

MIIs. Working with Bridger, GHGSat, and Insight M, the COBE science team (METEC1547

and CSM) obtained over 30,000 individual scans of facilities from aerial overflights. These1548

scans detected approximately 2,000 emissions from upstream facilities that report to the1549

Colorado ONGAEIR, spanning from < 1 kg/hr to upwards of 350 kg/hr (Table 5). METEC1550

and CSM developed independent models, each with strengths and limitations, to determine1551

total emissions and ratios of total emissions to reported emissions. The two models made key1552

different assumptions about incorporating the measurement data, and came up with different1553

sets of state-wide emissions totals and ratios: between 87,210 and 134,352 mt/y and ratios1554

of 3.30 to 5.09 for the statistical model (when filtered down to sites in ONGAEIR modeled1555

by MAES) vs 38,936 mt/y and a ratio of 1.47 for MAES. When including all ONGAEIR1556

facilities, the statistical model estimates emissions between 109,384 and 167,848 mt/y and1557

ratios of 3.81 to 5.85. The ratios developed in this study are specific to the ONGAEIR data1558

and should not be interpreted as methane ratios related to total production in Colorado.1559

This report is an update to the originally submitted report on June 30, 2025. The updates1560

are focused on the model results and include:1561

• The contribution of various emission rates to the MAES model total, showing the1562

importance of small emissions1563

• Additional methods for estimating emissions below aerial threshold in the CSM model1564

The modeling teams will continue to collaborate in the recently funded COBE-2 project1565

to determine specific causes for the discrepancies in model results. Additionally, COBE-21566

will develop recommended default factors for 2027 and will continue to work with operator1567

participants. These findings will be communicated regularly to the APCD team through1568

peer-reviewed journal articles.1569

7 Project Team Contributions1570

COBE had two primary funded project teams: the METEC and CSM modeling team, and1571

the aerial measurement companies, Bridger, GHGSat, and Insight M.1572

METEC was the overall project lead (PI: Hodshire) and was responsible for overall1573

direction, project management, and execution of all deliverables for CDPHE’s APCD. They1574

also led flight planning with each aerial company and led all participating operator engagement.1575

METEC and CSM each developed separate models to estimate total emissions and ratios1576

of modeled to reported emissions and collaborated closely on data sharing and additional1577

methodological and results discussions.1578

The aerial teams each provided measurements and participated in the following roles:1579
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• Bridger participated in emission data collection for the Piceance, DJ, and other basins1580

within the COBE project, as well as assisted in site selection and sample planning1581

for its aerial measurement campaigns. Bridger provided a preliminary unpublished1582

quantification error (QE) model and advised the COBE team on best practices for1583

implementing the QE model. Bridger did not participate in total emissions estimation1584

model development or integration of measurement data and models into total emissions1585

estimates.1586

• GHGSat participated in emission data collection for the Piceance, DJ, and other1587

basins within the COBE project, as well as assisted in site selection and sample planning1588

for its aerial measurement campaigns. GHGSat did not participate in total emissions1589

estimation model development or integration of measurement data and models into1590

total emissions estimates.1591

• Insight M participated in emission data collection for the Piceance, DJ, and other1592

basins within the COBE project, as well as assisted in site selection and sample planning1593

for its aerial measurement campaigns. Insight M did not participate in total emissions1594

estimation model development or integration of measurement data and models into1595

total emissions estimates.1596
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A Appendix1742

A.1 Facilities Scanned in Basins by PS Class1743

Approximately 91.4% of the facilities in the DJ basin that are included in 2022 ONGAEIR1744

were scanned by at least one aerial vendor. The breakdown by PS classification is shown in1745

Figure 19. GHGSat scanned the majority of the facilities in each PS class in the DJ basin.1746

Most of the positive detections were reported by Bridger.1747

Figure 19: Percentage of facilities in the DJ basin scanned by at least one vendor (top
row) and by each vendor (subsequent rows). The percentage in black indicates the overall
proportion of facilities scanned within each PS class. The bold percentage in parentheses
represents the share of scanned facilities where emissions were detected, while the regular-font
percentage shows the share of scanned facilities with no detected emissions. Percent colors
correspond to the associated PS classes.

Approximately 96.8% of the facilities in the Piceance basin that are included in 20221748

ONGAEIR were scanned by at least one aerial vendor. The breakdown by PS classification is1749

shown in Figure 20. Similarly to the DJ basin, GHGSat scanned the majority of the facilities1750

in each PS class in the Piceance basin as well. Most of the positive detections were reported1751

by Bridger.1752
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Figure 20: Percentage of facilities in the Piceance basin scanned by at least one vendor (top
row) and by each vendor (subsequent rows). The percentage in black indicates the overall
proportion of facilities scanned within each PS class. The bold percentage in parentheses
represents the share of scanned facilities where emissions were detected, while the regular-font
percentage shows the share of scanned facilities with no detected emissions. Percent colors
correspond to the associated PS classes.

Approximately 92.4% of the facilities in the other basins that are included in 20221753

ONGAEIR were scanned by at least one aerial vendor. The breakdown by PS classification1754

is shown in Figure 21. Insight M scanned the majority of the facilities in PS2, PS4, and PS61755

classes in other basins. Bridger scanned the least number of facilities in the other basins, not1756

capturing any of PS1. Most of the positive detections on PS4 and PS6 facilities were reported1757

by Bridger, while more facilities of class PS1 and PS2 had positive emissions according to1758

GHGSat reports.1759
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Figure 21: Percentage of facilities in other basins scanned by at least one vendor (top row) and
by each vendor (subsequent rows). The percentage in black indicates the overall proportion
of facilities scanned within each PS class. The bold percentage in parentheses represents the
share of scanned facilities where emissions were detected, while the regular-font percentage
shows the share of scanned facilities with no detected emissions. Percent colors correspond
to the associated PS classes.

A.2 Details on Aerial Measurement Technologies1760

A.2.1 Bridger1761

Bridger Photonics (Bridger) specializes in aerial methane detection and quantification using1762

its proprietary Gas Mapping Light Detection and Ranging (LiDAR) (GML) technology [40].1763

GML is a high-resolution, aircraft-mounted remote sensing technology that scans facilities1764

to produce a fine-scale (2 m resolution [36]) grid of methane observations. Gas Mapping1765

LiDAR uses laser spectroscopy lidar measurements of the methane absorption line at 16511766

nm to determine the methane concentration between the sensor and the objects on the1767

ground illuminated by the GML LiDAR beam. Individual LiDAR point measurements1768

are rasterized to create geo-registered methane concentration imagery, which enables high-1769

sensitivity detection of methane plumes and precise localization and quantification of emission1770

sources as described in Johnson et al. [9]. For analysis in COBE, facility-level emissions were1771

calculated by aggregating the daily average emissions from all sources within the facility.1772

Bridger is continuously refining and enhancing its quantification model to improve the1773

accuracy of their emission estimates. Bridger developed a GML quantification error model to1774

account for the bias and uncertainty of single-pass emission rate estimates. A preliminary,1775

unpublished version of the model was provided to the COBE team and was used to correct1776

measurement bias and perform uncertainty analysis. The error model relies on a single input1777
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parameter, the average signal-to-noise ratio (SNR). Average SNR represents the enhancement1778

of the plume signal above the noise floor during measurement conditions. In general, bias and1779

uncertainty are highest when detections barely exceed the noise floor (smaller average SNR)1780

and decrease as the plume enhancement increases (higher average SNR). For each detection1781

event, the average SNR is computed by averaging the SNR of all pixels within the enhanced1782

region of the detected methane plume.1783

The error rate is modeled by a log-logistic distribution, with probability density function1784

pdf := f(α, β; R) =
(β

α
)(R

α
)β−1

(1 + (R
α

)β)2 .

where R is the relative error ratio, R = Actual emission rate
Estimated emission rate . The scale, α, and shape, β,1785

parameters vary based on the magnitude of the average SNR and define the distribution of1786

relative error ratios. The distribution average (mean) for R, the bias correction factor, is1787

then used to scale the original estimated emission rate, yielding the bias corrected emission1788

rate. The corrected rates were predominantly lower than the original reported (estimated)1789

rates with an average decrease of -26.7% and range of decrease of -32.78% to -0.002%. Only1790

a few observations were increased, by an average of 0.14%. The full distribution for each1791

detection was used in uncertainty analysis, for instance to provide confidence intervals in the1792

accompanying anonymized dataset and for the estimation of distributions as described in1793

Section A.9. We also mimic the use of log-logistic distributions in error models for the other1794

aerial companies, as described in the following sections.1795

Sometimes, Bridger detects elevated methane concentrations that signal the presence of an1796

emission, but no corresponding emission rate estimate is generated. This can occur when the1797

methane plume is at the edge of Bridger’s survey swath or when methane transport conditions1798

limit the accuracy of plume quantification. Before aggregating emission rate estimates at the1799

facility level, the CSM team imputed emission estimates in cases where elevated methane1800

concentrations were detected but no emission rate was reported (the statistical MII approach1801

uses these imputed values, whereas the MAES MII approach does not). When available,1802

source-level daily mean of positive emission rates were used. If these were unavailable, the1803

project overall source-level mean was applied; otherwise, a default value based on the 90%1804

probability of detection (1.27 kg/h) was used, as reported by Thorpe et al. [23]. The impact1805

of imputation on the distribution is subtle. After imputation, the lower first quartile and1806

median of the data slightly increased at the first decimal level: this indicates that the central1807

mass of the data is slightly shifted upward. However, the higher mean and third quartile1808

indicate that the upper tail contains higher values in the non-imputed data, again at the1809

first decimal place level. Consequently, imputation appears to slightly dampen upper-end1810

variability while elevating mid-range values.1811

A.2.2 GHGSat1812

GHGSat High-Resolution Airborne Methane Monitoring, known as DATA AIR [14], uses a1813

high-resolution spectrometer mounted on aircraft to detect and quantify methane emissions,1814

mostly at the facility level. Two generations of products were used during COBE: Gen1,1815

which is capable of detecting emissions above 10 kg/hr and Gen2 with emission detection1816
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as low as 5 kg/hr at a 3 m/s wind speed when flying at 10,000 ft above ground level at1817

a nominal speed of 140 knots. One Gen1 sensor, referred to as AV1, was used, and two1818

Gen2 sensors, referred to as AV3 and AV5, were used. The sensors are engineered to detect1819

elevated methane concentrations from local sources by comparing them to the surrounding1820

background levels within the observed scene [24]. All collected imagery is processed with1821

GHGSat proprietary toolchain software. Most detections by GHGSat were only precise1822

enough in location to be treated as facility-level emissions, but in some specific cases, multiple1823

clearly defined plumes were detected at the same time and treated as separate emissions.1824

When facility-level estimates were needed, these emissions reported at the same timestamp1825

for a given facility were first summed, and the facility-level emission rate was then calculated1826

by averaging these totals on a per-day basis.1827

GHGSat reports uncertainty as a standard deviation for each individual measurement,1828

based on their analysis of multiple sources of error [28]. For consistency with the error models1829

of the other aerial companies, we used a log-logistic distribution with the reported standard1830

deviation to model the error of each measurement.1831

A.2.3 Insight M1832

Insight M (formerly Kairos Aerospace) uses a proprietary aerial methane detection system1833

called LeakSurveyor [12], which combines spectral imaging sensors, high-resolution optical1834

imaging, GPS locations, and inertial measurement units mounted on small fixed-wing aircraft.1835

Insight M airplanes fly in a lawnmower pattern to ensure full coverage of the area of interest.1836

The system is designed to detect emissions as low as 10–50 kg/hr, with 90% probability of1837

detection at 10 kg/hr under optimal conditions. Insight M’s data processing pipeline converts1838

raw spectral and meteorological data into plume detections and emission rate estimates at1839

the facility level. Two sensor types with 10 kg/hr and 25 kg/hr detection limits were used1840

during COBE. Multiple emission rates reported for the same facility were averaged on a1841

per-day basis.1842

Insight M cites a 40% standard deviation for uncertainty in all measurements, found1843

in [27]. For this study, we fit log-logisitic distributions to give a more precise error model, and1844

one consistent with the other aircraft companies. A log-logisitic distribution for the relative1845

error ratio with median 1 was fit for Insight M’s 25 kg/hr sensor using the data from [27], and1846

another was fit for Insight M’s 10 kg/hr sensor using the data from [25]. The distributions1847

are shown in Figure 22.1848

A.3 Details on Continuous Monitoring Systems (CMS)1849

CMS data for this study come from five sites in the Piceance basin that are all owned by the1850

same operator. The data was shared confidentially and specific details on facility locations1851

and sensor types remain confidential. The CMS are point-sensor networks, meaning that1852

methane concentrations are measured by a network of in situ point sensors that are arranged1853

around the perimeter of each site. Each of the five sites in this study is equipped with three1854

or four CMS point sensors, all provided by the same CMS vendor. The amount of data varies1855

per site, with one site having 16 months of data, another having 12 months of data, two1856

having 10 months, and the last having 6 months. The fact that emissions below 5 kg/hr1857
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Figure 22: Log-logistic distributions were fit to publicly available controlled release data to
model the errors for Insight M’s two sensors.

across Colorado are estimated using CMS data from only five sites is a clear limitation of1858

this approach, but it provides a starting point for a completely measurement-based method1859

for estimating emissions below the detection limit of aerial technologies. It has the advantage1860

of not relying on a bottom-up inventory to estimate small emissions, which are known to1861

underestimate emissions [15]. Future work will extend this analysis to many more sites across1862

basins and operators.1863

An analytical framework is required to translate the raw CMS concentration measurements1864

to estimates of emission source and rate, which are necessary to fill in the distribution of1865

emission rates below Bridger’s DMC of 5 kg/hr (discussed in the main body of the report).1866

We use the Bayesian hierarchical model described in [41] to perform this task. At a high1867

level, this model estimates multi-source emissions by combining two separate models within1868

a Bayesian framework: an atmospheric transport model and a time series model for the1869

sensor data. The model uses a spike-and-slab prior for the emission rate parameters, which1870

allows them to be estimated as identically zero, as there are often times when equipment1871

groups are not emitting on oil and gas sites. Furthermore, this model accounts for periods of1872

“no information,” or the times when wind blows emitted methane between the CMS point1873

sensors, by using the method described in [42]. In short, this method identifies periods of1874

no information for each source via an atmospheric dispersion model and removes them from1875

subsequent analysis. Finally, to aggregate the source-level emission rate estimates from this1876

model to the site level (to match the aerial analysis described in the main text), we simply1877

sum across the source-level estimates at each time step. Importantly, we only do this for time1878

steps where there is “information” for each source, meaning that there is a downwind sensor1879

for each source. This results in 3,586 site-level emission rate estimates.1880

Figure 24 shows the distribution of site-level CMS emission rate estimates across the five1881

sites used in this study. The red curve on the left-most plot shows a truncated lognormal1882

fit to the data below 5 kg/hr, that is the data below Company L’s DMC: the data that we1883

sample from. The right-most plot shows a quantile-quantile (QQ) plot of the log of the1884

site-level emission rate estimates, which justifies the lognormal fit.1885
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Figure 23: Left: Distribution of site-level CMS emission rate estimates with fitted lognormal
shown in red. The vertical dashed line shows where the distribution is truncated when paired
with the distribution of aerial rates. Right: QQ plot of the log of the CMS emission rate
estimates.

Figure 24: Left: Distribution of site-level CMS emission rate estimates below 1 kg/h with
fitted lognormal shown in red. Right: QQ plot of the log of the CMS emission rate estimates
below 1 kg/h.

A.4 Comparison of Below-threshold Distributions1886

Here we show histograms and CDF plots for the three below-threshold distributions used in1887

the statistical model. Only the section of each distribution that is sampled from is shown,1888

that is, only rates below 5 kg/hr. The distribution of CMS-derived rates has much more1889

density at higher emission rates compared to the two distributions from the literature, which1890

explains why estimates using the CMS-derived rates are notably higher.1891
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Figure 25: Histograms of the three below-threshold distributions used in the statistical model:
CMS-informed, Williams, and Sherwin. All three are truncated at 5 kg/hr, as that is the
regime sampled from.

Figure 26: Empirical CDFs of the three below-threshold distributions used in the statistical
model: CMS-informed, Williams, and Sherwin. All three are truncated at 5 kg/hr, as that is
the regime sampled from.
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A.5 Normalized Statistical MBI Results1892

Here we present the results of the statistical MBI model, normalized by oil and gas production1893

across Colorado and subsets of Colorado. Figure 27 shows these results normalized by natural1894

gas and oil production (in barrel of oil equivalent (BOE)), respectively. A clear trend in1895

this figure is that the normalized emissions in the DJ basin are much lower compared to the1896

Piceance and other basins. This is also the case for PS4 compared to PS2. Note that BOE1897

numbers were calculated as:1898

BOE = Gas Production [Mcf]/5.8 + Oil Production [BBL]
Tables corresponding to these results are shown in Tables 14 - 16: one per below-threshold1899

sampling method.1900

Figure 27: Summary of statistical MBI results, comparable to Figure 14, normalized by oil
and gas production. The vertical axis is in units of metric tons of methane emitted per BOE
produced.

A.6 Tabulated Version of Statistical MBI Results1901

Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 1.63 (1.50, 1.82) 0.89 0.54 0.19 0.32 5.09
DJ Basin 1.77 (1.59, 2.09) 0.85 0.63 0.29 0.55 3.23

Piceance Basin 1.68 (1.46, 2.02) 0.87 0.67 0.15 0.31 5.46
Other Basins 1.25 (1.16, 1.41) 1.03 0.18 0.05 0.22 5.64

PS2 1.38 (1.23, 1.61) 0.98 0.29 0.10 0.17 7.87
PS4 1.60 (1.42, 1.92) 0.91 0.48 0.20 0.49 3.27

Table 8: Tabulated version of results in Figure 13, specifically using the CMS-informed
distribution for below-threshold sampling. All numbers are normalized to a per-facility,
per-hour level, and units are kg/hr.
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Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 1.14 (1.01, 1.33) 0.41 0.54 0.19 0.32 3.57
DJ Basin 1.29 (1.10, 1.61) 0.36 0.63 0.29 0.55 2.35

Piceance Basin 1.20 (0.97, 1.55) 0.39 0.67 0.15 0.31 3.90
Other Basins 0.75 (0.65, 0.91) 0.53 0.18 0.05 0.22 3.38

PS2 0.88 (0.73, 1.12) 0.49 0.29 0.10 0.17 5.04
PS4 1.11 (0.93, 1.43) 0.42 0.48 0.20 0.49 2.27

Table 9: Tabulated version of results in Figure 13, specifically using the Williams distribution
for below-threshold sampling. All numbers are normalized to a per-facility, per-hour level,
and units are kg/hr.

Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 1.06 (0.93, 1.25) 0.32 0.54 0.19 0.32 3.30
DJ Basin 1.21 (1.02, 1.52) 0.28 0.63 0.29 0.55 2.19

Piceance Basin 1.12 (0.88, 1.46) 0.30 0.67 0.15 0.31 3.62
Other Basins 0.66 (0.57, 0.83) 0.44 0.18 0.05 0.22 2.98

PS2 0.79 (0.64, 1.03) 0.40 0.29 0.10 0.17 4.54
PS4 1.02 (0.84, 1.34) 0.33 0.48 0.20 0.49 2.09

Table 10: Tabulated version of results in Figure 13, specifically using the Sherwin distribution
for below-threshold sampling. All numbers are normalized to a per-facility, per-hour level,
and units are kg/hr.

Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 134,351.93 (123,760.01, 149,769.76) 85,782.75 35,935.24 12,633.93 26,410.65 5.09
DJ Basin 32,123.54 (28,747.12, 37,874.75) 18,714.58 9,200.21 4,208.75 9,955.14 3.23

Piceance Basin 42,746.42 (36,956.97, 51,360.31) 26,220.24 13,504.96 3,021.22 7,825.36 5.46
Other Basins 48,661.74 (45,085.55, 55,045.82) 41,731.48 5,453.41 1,476.84 8,630.15 5.64

PS2 38,486.37 (34,289.31, 45,046.71) 29,658.19 6,586.56 2,241.62 4,888.36 7.87
PS4 30,859.13 (27,430.92, 37,119.98) 20,231.11 7,460.85 3,167.17 9,430.86 3.27

Table 11: Tabulated version of Figure 14, specifically using the CMS-informed distribution
for below-threshold sampling. All numbers are on a basin or state-wide level, and units are
mt/y.

Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 94,228.17 (83,590.13, 109,668.13) 45,658.99 35,935.24 12,633.93 26,410.65 3.57
DJ Basin 23,370.31 (19,990.91, 29,114.29) 9,961.35 9,200.21 4,208.75 9,955.14 2.35

Piceance Basin 30,481.29 (24,587.89, 39,248.04) 13,955.10 13,504.96 3,021.22 7,825.36 3.90
Other Basins 29,142.82 (25,495.42, 35,581.00) 22,212.57 5,453.41 1,476.84 8,630.15 3.38

PS2 24,614.47 (20,366.35, 31,214.30) 15,786.29 6,586.56 2,241.62 4,888.36 5.04
PS4 21,395.84 (17,950.42, 27,680.68) 10,767.83 7,460.85 3,167.17 9,430.86 2.27

Table 12: Tabulated version of Figure 14, specifically using the Williams distribution for
below-threshold sampling. All numbers are on a basin or state-wide level, and units are mt/y.
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Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 87,209.80 (76,538.70, 102,670.46) 38,640.62 35,935.24 12,633.93 26,410.65 3.30
DJ Basin 21,839.95 (18,430.55, 27,582.62) 8,430.99 9,200.21 4,208.75 9,955.14 2.19

Piceance Basin 28,335.90 (22,422.15, 37,125.64) 11,809.72 13,504.96 3,021.22 7,825.36 3.62
Other Basins 25,729.38 (22,086.96, 32,189.49) 18,799.13 5,453.41 1,476.84 8,630.15 2.98

PS2 22,189.19 (17,965.77, 28,807.93) 13,361.01 6,586.56 2,241.62 4,888.36 4.54
PS4 19,741.15 (16,267.51, 25,993.67) 9,113.13 7,460.85 3,167.17 9,430.86 2.09

Table 13: Tabulated version of Figure 14, specifically using the Sherwin distribution for
below-threshold sampling. All numbers are on a basin or state-wide level, and units are mt/y.

Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 2.14 ×10−6 (1.98 ×10−6, 2.39 ×10−6) 1.37 ×10−6 5.74 ×10−7 2.02 ×10−7 4.22 ×10−7 5.09
DJ Basin 5.36 ×10−7 (4.8 ×10−7, 6.32 ×10−7) 3.12 ×10−7 1.53 ×10−7 7.02 ×10−8 1.66 ×10−7 3.23

Piceance Basin 2.91 ×10−5 (2.51 ×10−5, 3.49 ×10−5) 1.78 ×10−5 9.19 ×10−6 2.06 ×10−6 5.32 ×10−6 5.46
Other Basins 4 ×10−5 (3.7 ×10−5, 4.52 ×10−5) 3.43 ×10−5 4.48 ×10−6 1.21 ×10−6 7.09 ×10−6 5.64

PS2 5.07 ×10−5 (4.52 ×10−5, 5.94 ×10−5) 3.91 ×10−5 8.68 ×10−6 2.95 ×10−6 6.44 ×10−6 7.87
PS4 8.72 ×10−7 (7.75 ×10−7, 1.05 ×10−6) 5.72 ×10−7 2.11 ×10−7 8.95 ×10−8 2.66 ×10−7 3.27

Table 14: Tabulated version of Figure 27, specifically using the CMS-informed distribution
for below-threshold sampling. All numbers are on a basin or state-wide level, and units are
mt/boe production.

Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 1.5 ×10−6 (1.33 ×10−6, 1.75 ×10−6) 7.29 ×10−7 5.74 ×10−7 2.02 ×10−7 4.22 ×10−7 3.57
DJ Basin 3.9 ×10−7 (3.33 ×10−7, 4.86 ×10−7) 1.66 ×10−7 1.53 ×10−7 7.02 ×10−8 1.66 ×10−7 2.35

Piceance Basin 2.07 ×10−5 (1.67 ×10−5, 2.67 ×10−5) 9.49 ×10−6 9.19 ×10−6 2.06 ×10−6 5.32 ×10−6 3.90
Other Basins 2.39 ×10−5 (2.09 ×10−5, 2.92 ×10−5) 1.82 ×10−5 4.48 ×10−6 1.21 ×10−6 7.09 ×10−6 3.38

PS2 3.24 ×10−5 (2.68 ×10−5, 4.11 ×10−5) 2.08 ×10−5 8.68 ×10−6 2.95 ×10−6 6.44 ×10−6 5.04
PS4 6.04 ×10−7 (5.07 ×10−7, 7.82 ×10−7) 3.04 ×10−7 2.11 ×10−7 8.95 ×10−8 2.66 ×10−7 2.27

Table 15: Tabulated version of Figure 27, specifically using the Williams distribution for
below-threshold sampling. All numbers are on a basin or state-wide level, and units are
mt/boe production.

Estimated Rate 95% CI Rates < 5 kg/hr Rates 5 - 100 kg/hr Rates > 100 kg/hr ONGAEIR Rate Ratio

All Basins 1.39 ×10−6 (1.22 ×10−6, 1.64 ×10−6) 6.17 ×10−7 5.74 ×10−7 2.02 ×10−7 4.22 ×10−7 3.30
DJ Basin 3.64 ×10−7 (3.07 ×10−7, 4.6 ×10−7) 1.41 ×10−7 1.53 ×10−7 7.02 ×10−8 1.66 ×10−7 2.19

Piceance Basin 1.93 ×10−5 (1.53 ×10−5, 2.53 ×10−5) 8.03 ×10−6 9.19 ×10−6 2.06 ×10−6 5.32 ×10−6 3.62
Other Basins 2.11 ×10−5 (1.81 ×10−5, 2.64 ×10−5) 1.54 ×10−5 4.48 ×10−6 1.21 ×10−6 7.09 ×10−6 2.98

PS2 2.92 ×10−5 (2.37 ×10−5, 3.8 ×10−5) 1.76 ×10−5 8.68 ×10−6 2.95 ×10−6 6.44 ×10−6 4.54
PS4 5.58 ×10−7 (4.6 ×10−7, 7.34 ×10−7) 2.57 ×10−7 2.11 ×10−7 8.95 ×10−8 2.66 ×10−7 2.09

Table 16: Tabulated version of Figure 27, specifically using the Sherwin distribution for
below-threshold sampling. All numbers are on a basin or state-wide level, and units are
mt/boe production.
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A.7 MAES MII Emission Distributions1902

All Basins

Figure 28: CDF of MAES MII results for all basins

DJ Basin

Figure 29: CDF of MAES MII results for the DJ basin
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Piceance Basin

Figure 30: CDF of MAES MII results for the Piceance basin

Other Basins

Figure 31: CDF of MAES MII results for other basins
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PS1

Figure 32: CDF of MAES MII results for PS1 sites

PS2

Figure 33: CDF of MAES MII results for PS2 sites
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PS4

Figure 34: CDF of MAES MII results for PS4 sites

PS6

Figure 35: CDF of MAES MII results for PS6 sites

72



A.8 Estimating Probability of Detection Curves1903

The difference in technologies and measurement methods between the three aerial companies1904

and their various sensors play an important role in our study, as the separately collected1905

datasets must be combined for analysis. In this section, we estimate probability of detection1906

curves that are used in Section A.9 to combine the distributions of emissions viewed by the1907

various sensors. These probability of detection curves are not meant as a comparison of the1908

aerial vendors and are only intended to assist in the analysis of the present data. As such,1909

while the methods and data sources are described here, the final curves used for the study1910

are not presented.1911

Any characterization of the state-wide distribution of emissions from the aerial data1912

must be made with the knowledge that a sensor can only see a representative sample of this1913

distribution at sufficiently high emission rates, and as such, sensors with different capabilities1914

will provide different views of the distribution. The differences in sensor capabilities can be1915

seen from the data collected during the measurement campaign: in Figure 36, each sensor1916

exhibits a clear increase in the number of detections through a lower range of emission rates,1917

before reaching a peak and decreasing. The increasing range indicates a gradual increase in1918

the probability that the sensor successfully detects an emission.

Figure 36: Distributions of detections in the measurement campaign for four of the sensors
used; sensors are anonymized in this figure. To account for error, the emission rate for each
detection is distributed according to the probability density function from the respective error
model. For each sensor, the value on the y-axis shows the approximate percentage of this
sensor’s detections in a given 1 kg/hr range. The shapes of the distributions, in particular
the different locations of the peaks, indicate different sensor detection limits.

1919

To begin, there is publicly available controlled testing data detailed enough to fit a1920

probability of detection curve for Insight M’s 10 kg/hr sensor [27]. We fit a logistic curve to1921

this data, estimating probability of detection as a function of emission rate (see Figure 37).1922

For Insight M’s 25 kg/hr sensor, we make the simplistic assumption that a given probability1923
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of detection is reached at 2.5 times the emission rate needed for the 10 kg/hr sensor. For1924

Bridger, probability of detection curves have been fit in previous papers [23, 29]. Bridger1925

reaches a high probability of detection at lower rates, for instance achieving a 90% probability1926

of detection around 1.27 kg/h [23]. As such, we simply treat the probability of detection for1927

Bridger measurements as 1, with the acknowledgment that very low emission rates are likely1928

underrepresented in the sample.1929

Figure 37: Logistic probability of detection curve for Insight M’s 10kg/h sensor fit to
controlled release data [27], expressing the probability of detection as a function of emission
rate. Probability of detection curves for other sensors were approximated by comparing to
this curve.

For the three GHGSat sensors, controlled release data was either not available or was not1930

detailed enough to fit probability of detection curves. We estimate probability of detection1931

curves by comparing their detections during the measurement campaign with those of Insight1932

M’s 10 kg/hr sensor. We divide the number of detections of a sensor at a particular emission1933

rate by that for Insight M’s 10 kg/hr sensor, then rescale by a linear function so that the1934

resulting curve reaches a peak at 1. This serves as an estimate of the portion of detections1935

seen by Insight M’s 10 kg/hr sensor that would be seen by the other sensor, so multiplying1936

by the probability of detection curve for Insight M’s 10 kg/hr sensor gives an approximate1937

probability of detection curve. While these are not replacements for probability of detection1938

curves found directly from controlled release data, they provide a rough estimate based on1939

the data available in this study and allow for a more informed analysis than could be done1940

without attention to the different sensors’ capabilities.1941

A.9 Combined Distributions for Failure Types1942

Here we describe in more detail how data from the three aerial companies are combined into1943

a single distribution for emission rates from a given failure type (for use in MAES models;1944

see Section 3.2.3). While the goal is similar to the distribution combining of Section 3.3, that1945
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section considered facility-level emission rates, whereas the techniques for this section are1946

applied to equipment-level emission rates for use in the MAES MII approach.1947

Partition the range of emission rates to be modeled into “bins,” narrow ranges of emission1948

rates with endpoints 0 = e0 < e1 < e2 < . . . . If we can estimate the probability that an1949

emission rate x is in bin [ej−1, ej), dividing this probability by the length of the bin gives an1950

estimate of the probability density in this bin. We therefore describe a procedure to estimate1951

the probability that an emission rate falls in each bin, given samples taken by multiple1952

sensors.1953

Let M be the number of aircraft measurements taken by a mix of sensors and let i index1954

all measurements. Let pi(x) be the probability of detection curve for the sensor that took1955

the ith measurement, as a function of emission rate x. For the ith measurement, let xi be the1956

actual emission rate and yi the observed emission rate, where nondetection is recorded as1957

yi = 0. We let bi = 1 if the emission was successfully detected and bi = 0 if not. The variable1958

bi is modeled as a random variable drawn from a Bernoulli distribution with probability1959

equal to pi(xi) (note that probability of detection is typically measured in terms of the actual1960

emission rate, not the observed rate). When bi = 1, we let ri be the ratio of the actual1961

emission rate to observed, so that yi = bi
xi

ri
. We can thus model ri as a random variable1962

whose distribution is determined by the aircraft error models discussed above. Fixing a large1963

number N , for each observed yi (including zeros), we take N samples from the distribution1964

for ri and multiply by yi to generate N samples of yiri = bixi. We now count each as 1/N1965

samples and group into the bins above: let sj be the resulting number of samples in the bin1966

[ej−1, ej). Then sj is approximately the number of successful detections that are expected to1967

have true emission rates in the bin [ej−1, ej) when M measurements are taken. From this,1968

we wish to estimate the probability that a true emission rate is in this bin, so we divide by1969

the number of measurements out of the total M that we would expect to be successful when1970

applied to emission rates in this bin, the “effective samples” for this bin. This number of1971

effective samples is approximated by ∑M
i=1 pi(mj), where mj = 1

2(ej−1 + ej) is the midpoint1972

of the bin, so the final estimate of true emission rates in the bin [ej−1, ej) is sj/
∑M

i=1 pi(mj).1973

The procedure described above applies generally to any subset of the aerial measurements1974

for which we wish to create a distribution. For samples by Insight M and GHGSat sensors,1975

the probability of detection curves described in Section A.8 were used. While the Insight M1976

probability of detection is based on controlled release testing, future versions of this analysis1977

will hopefully be able to replace the GHGSat curve with updated probability of detections1978

curves from controlled release tests. For samples by Bridger, the probability of detection1979

was set to 1 throughout, so the number of effective samples is always at least the number of1980

Bridger samples. As a result, the estimated probabilities of low emission rates (where Bridger1981

has decreased probability of detection) are expected to be underestimates; this choice was1982

made in acknowledgment of the limitations in measuring these small emission rates.1983

For use in MAES, we created such a distribution for each of the following failure types:1984

compressors, miscellaneous emitters, controlled tanks, and uncontrolled tanks (the remaining1985

failure types, flares and heaters, are modeled mechanistically in MAES and do not require a1986

distribution). The distributions, along with the distributions estimated from the individual1987

aerial companies, are shown in Figure 38. Each distribution was created from the collection1988

of measurements that were classified as the given failure type following the procedure in1989

Section 3.2.2. Each measurement was counted with the weight of the probability score it1990
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was assigned: for instance, if a measurement was assigned a probability score of .7, it was1991

counted as .7 samples in the procedure above. In each case, we used bins of width .01 kg/hr1992

for emissions between 0 and 5 kg/hr and bins of width increasing on a log scale for emissions1993

above 5 kg/hr. We used N = 250, 000 random samples per detection following the procedure1994

above to create distributions for each failure type. The number M of aircraft measurements1995

(including nondetects) for each failure type was estimated by summing the total number of1996

associated equipment scanned over all aircraft measurements. As described in Section 2.1,1997

equipment counts for the facilities scanned were taken primarily from ONGAEIR: the counts1998

used are shown in Table 3.1999
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Figure 38: Distributions for emissions observed by aircraft. The total probability in each
distribution is the probability of detecting an emission on the given equipment; nondetections
are not pictured but account for the remaining probability. The four equipment types shown
here are the ones modeled in MAES by emission factor distributions.

A.10 Additional Data Sources2000

Additional facilities not reported in the 2022 ONGAEIR dataset were scanned by Bridger and2001

GHGSAT in both the DJ and other basins, with the vast majority (99.9%) located outside2002

the DJ Basin. These facilities are present in Colorado Energy and Carbon Management2003

Commission (ECMC) Database. GHGSAT scanned 3,376 ECMC sites while Bridger scanned2004

343 such sites. Only 2% of the additional data had a record of a positive emission rate. All2005
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Bridger scanned sites are located in the other basins. The average positive detected emission2006

rate reported by Bridger is 3.67 kg/hr with a minimum rate of 0.115 kg/hr and maximum2007

rate of 102 kg/hr. The two facilities scanned by GHGSAT in the DJ basin had no detected2008

emissions. The average positive detected emission rate reported by GHGSAT is 170 kg/hr2009

with a minimum rate of 6 kg/hr and maximum rate of 3,242 kg/hr. This additional data2010

wasn’t used in the development of either MII model.2011

A.10.1 Equipment Count Validation2012

Information for frequency of different types of modeled equipment is obtained primarily2013

through ONGAEIR reporting, as operators are required to specify the source equipment2014

when reporting emissions. However, additional sources of data on this were explored.2015

The primary tool used was a machine learning (ML) image classification model used to2016

identify oil/gas equipment. Using satellite imagery, this tool identifies tanks, flares, and2017

separators. This model was deployed on 7,015 facilities throughout the state, of which 7,0012018

had corresponding ONGAEIR submissions to compare to. Limitations of the satellite imagery2019

approach was age of the images (not necessarily corresponding to 2024) and that it didn’t2020

cover all facilities.2021
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Figure 39: Comparison of equipment counts between ONGAEIR reporting and ML model
identification across different facility types.

We additionally used aerial imagery when the imagery was sufficiently high-resolution2022

enough to determine on-site equipment as additional checks.2023

The results from each of these sources can only be used selectively, where the data from2024

ONGAEIR is clearly inaccurate. An example of this is one site that reported 74 tanks. Upon2025

inspection of satellite imagery, there were many objects (that resembled tanks) clearly not2026

associated with oil/gas production. Both the aerial imagery at this site, as well as the ML2027

model, observed zero tanks at this location, so the count of tanks was updated to zero.2028

This process was conducted to correct tank counts on 16 sites, and flare counts on 47 sites.2029

The count of separators saw far more deviation across the three datasets, prompting the2030

application of assumptions described in Section 2.1.2031
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A.11 Emission Factor Summaries2032

Table 17: Methane emission factors by equipment group and PS class, reflecting the nonzero
samples of equipment annual emissions produced by the MAES MII model. The distributions
are consistently skewed right. The mean, 25th percentile, median, and 75th percentile are
given in units of mt/year.

PS Equipment Type Mean 25% Median 75%

PS1 Compressor 5.294 0.329 1.024 4.275
PS4 Compressor 1.947 0.246 0.690 1.890
PS6 Compressor 2.393 0.386 0.994 2.429
PS1 Flare 0.553 0.008 0.043 0.236
PS4 Flare 0.228 0.000 0.003 0.040
PS1 Heater 0.202 0.012 0.046 0.108
PS2 Heater 0.021 0.002 0.005 0.010
PS4 Heater 0.053 0.004 0.008 0.025
PS6 Heater 0.021 0.000 0.003 0.007
PS1 Miscellaneous 9.636 0.219 0.476 1.089
PS2 Miscellaneous 1.212 0.199 0.444 1.016
PS4 Miscellaneous 1.223 0.202 0.450 1.024
PS6 Miscellaneous 1.051 0.152 0.332 0.744
PS1 Separator 0.274 0.000 0.004 0.231
PS2 Separator 0.274 0.000 0.001 0.314
PS4 Separator 0.276 0.000 0.001 0.314
PS6 Separator 0.259 0.000 0.001 0.243
PS1 Tank 0.271 0.005 0.032 0.147
PS2 Tank 0.540 0.007 0.052 0.249
PS4 Tank 0.484 0.005 0.038 0.198
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A.12 MAES Inputs2033

Figure 40: This image shows the equipment and facility information required for the MAES
model.
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A.13 Anonymized Aerial Dataset2034

The anonymized dataset is published on Dryad [35], and includes a Comma Separated2035

Variable (CSV) file containing emissions measurements for each aerial vendor and campaign2036

and a README text file with further explanation. This data has been anonymized (by2037

removing any facility-identifying information) to ensure confidentiality for site operators.2038

Some metadata is included with each measurement: the aerial vendor and product used to2039

measure, the campaign (season), and the PS assigned to the facilities. Where available, there2040

is also assigned emission type and a determined cause. This tranche includes all emissions2041

detected, including maintenance emissions. Some measurements were determined to be2042

outside of the modeling scope for one of the following reasons: the site is using apparent2043

pre-production equipment (such as a drilling rig observed from aerial imagery), the site2044

is associated with midstream activities, or the emission recorded does not align with any2045

associated facility. The counts of measurements that fall into each of these categories are2046

described in Table 2, as well as included in the separate dataset.2047

A.14 ONGAEIR 2024 - Errors2048

Facilities with reported methane emissions errors. At the time of analysis, these errors were2049

flagged and were left out of this analysis. CDPHE is in contact with these operators to2050

request them to resubmit.2051

• Island Butte - B... reported 15,000 mt/y reported from tanks.2052

• Bret Grandbouche 24-02H - reported 231 mt/y in fugitives, would indicate a loss rate2053

of 78%.2054

• Dawson Creek - reported 231 mt/y in fugitives, would indicate a loss rate of 78%.2055

• Dill Gulch 1-22 - reported 231 mt/y in fugitives, would indicate a loss rate of 78%.2056

• Gnat Hill - reported 231 mt/y in fugitives, would indicate a loss rate of 78%.2057

• Welker 6-92 1-2H11 - reported 231 mt/y in fugitives, would indicate a loss rate of 78%.2058

A.15 MAES Modeled Criteria2059

In this project, MAES models facilities with either non-zero hydrocarbon liquid production2060

(oil and water) or gas-only production exceeding 1 (MMscf/year). The liquid production2061

requirement reflects fundamental dependencies in emission quantification algorithms where2062

key sources require liquid production as input parameters. For example, tank emissions2063

depend on gas-liquid phase equilibrium and flashing processes during pressure reduction in2064

separator-tank systems; without liquid throughput data, the volume of liberated gas cannot2065

be estimated. Similar dependencies exist for other liquid-handling equipment where emissions2066

are intrinsically linked to liquid production rates and compositions. Gas-only facilities above2067

the threshold can be modeled using gas throughput alone, as their equipment configurations2068

typically exclude liquid-dependent emission sources. Of the 3,008 facilities in this (gas-only)2069
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category, 68% have wellheads only and 32% report additional equipment, though the absence2070

of liquid production at these sites remains unclear. Several facilities were excluded from2071

modeling: 1,463 facilities reported neither gas nor liquid production; one operator reported2072

700 individual compressor sites with all other equipment aggregated at the basin level (these2073

compressors were consolidated into a single basin-level site for modeling); 95 facilities lacked2074

sufficient compressor data; and 12 duplicate facilities reported by multiple operators were2075

modeled only once.2076

A.16 Comparison of MAES-modeled and -unmodeled Sites2077

Here we present the results of subsampling studies on the ONGAEIR 2024 dataset, such2078

as those found in Figure 17, for all subsets of Colorado. The bimodal behavior visible in2079

Figures 41a and 43a is due to the presence of an extreme outlier (one operator reported all2080

their fugitive emissions at a single facility). The clusters of lower ratios consist of samples2081

including this facility, while the clusters of higher ratios consist of samples that do not.2082

(a) Distribution of statistical MBI ratios for all
basins resulting from random samples of facili-
ties of the same size as the number of facilities
modeled by MAES. The ratio using all sites is
shown with a dashed black line, and the ratio
using the MAES-modeled sites is shown with a
dashed red line.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for all basins, shown
for both all sites and the subset that were mod-
eled in MAES. The blue distribution is a boot-
strapped distribution for the mean for the whole
basin, and similarly the orange distribution is
for the subset modeled in MAES.

Figure 41: Subsampling study results for all basins.
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(a) Statistical MBI subsampling study results
for the Piceance Basin. Analagous to Figure
41a.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for the Piceance basin.
Analogous to Figure 41b.

Figure 42: Subsampling study results for the Piceance Basin.

(a) Statistical MBI subsampling study results
for other basins. Analagous to Figure 41a.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for other basins. Anal-
ogous to Figure 41b.

Figure 43: Subsampling study results for other basins.

(a) Statistical MBI was not performed for PS1
sites, so no distribution of ratios is shown.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for PS1 sites. Anal-
ogous to Figure 41b.

Figure 44: Subsampling study results for sites in the PS1 class.
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(a) Statistical MBI subsampling study results
for sites of class PS2. Analagous to Figure 41a.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for PS2 sites. Anal-
ogous to Figure 41b.

Figure 45: Subsampling study results for sites in the PS2 class.

(a) Statistical MBI subsampling study results
for sites of class PS4. Analagous to Figure 41a.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for PS4 sites. Anal-
ogous to Figure 41b.

Figure 46: Subsampling study results for sites in the PS4 class.

(a) Statistical MBI was not performed for PS6
sites, so no distribution of ratios is shown.

(b) Mean emissions as reported in the
ONGAEIR 2024 dataset for PS6 sites. Anal-
ogous to Figure 41b.

Figure 47: Subsampling study results for sites in the PS6 class.
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A.17 Previous results based on 2022 ONGAEIR2083

The previous version of this report, completed June 2025, gave results based on the 20222084

ONGAEIR dataset. Figures from that report are reproduced in Figures 48 and 49 for2085

reference. Figures 50 and 51 are updated versions, still based on the 2022 ONGAEIR dataset.2086

The main differences between the 2022 and 2024 ONGAEIR datasets are summarized in2087

Section 2. Results are summarized below, all comparing to the adjusted ONGAEIR totals2088

described in the final report.2089

Figure 48: MAES MII results based on the 2022 ONGAEIR dataset, reproduced from the
June 2025 COBE Final Report

Using the 2022 ONGAEIR data, the MAES inventory model total was 33,140 mt/y2090

compared to the adjusted ONGAEIR total of 35,508 mt/y, with maintenance emissions2091

excluded. The MAES MII model total was 45,207 mt/y. With ONGAEIR maintenance2092

emissions of 14,880 mt/y added in, the MAES MII model total increased to 60,087 mt/y. This2093

produced a state-wide ratio of 1.19 when compared to the ONGAEIR total (with maintenance2094

emissions) of 50,388 mt/y. Results are summarized in Figure 48.2095

The statistical model based on the 2022 ONGAEIR dataset estimated statewide emissions2096

of 145,766 mt/y using the CMS-informed distribution for the below-threshold rates, 102,5542097

mt/y using the Williams distribution, and 94,994 mt/y using the Sherwin distribution. These2098

produced ratios of 2.89, 2.04, and 1.89, respectively when compared with the ONGAEIR2099

total of 50,388 mt/y. Note that these results differ from those in the original report, as2100

the statistical model now uses the same subset of ONGAEIR 2022 as the MAES model for2101

consistency, which was not previously the case.2102
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Figure 49: Statistical model MBI results based on the 2022 ONGAEIR dataset, reproduced
from the June 2025 COBE Final Report

Figure 50: Update to Figure 48: MAES MII results based on the 2022 ONGAEIR dataset,
showing contributions of equipment types to ONGAEIR emissions
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Figure 51: Update to Figure 49: statistical model MBI results based on the 2022 ONGAEIR
dataset, including estimates based on Williams and Sherwin below-threshold distributions.
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