Comparing continuous methane monitoring technologies on operating oil and gas sites

Dorit Hammerling, Will Daniels, Spencer Kidd

Department of Applied Mathematics and Statistics, Colorado School of Mines Visiting appointment: National Center for Atmospheric Research (NCAR)

> American Geophysical Union 13 Dec 2024

Energy Emissions Modeling and Data Lab

COLORADO SCHOOL

Lots of complementary ways to measure methane

Continuous Monitoring System

Lots of complementary ways to measure methane

Continuous monitoring point-in-space sensors: we have only indirect measurements of what we care about

We have only indirect measurements of what we care about

This is an inverse problem: $m = F^{-1}(d)$

m: methane emission leak rate and location

d: methane concentrations from continuous monitors

F(): atmospheric transport model

methane leak

continuous = monitoring sensors

Event detection, localization, and quantification framework

Key features:

- Modular
- Sensor-agnostic
- Published
- Open-source

"Open-source DLQ algorithm"

Experimental setup across six Oil & Gas sites

Typical CMS setup on a production site in the study

Wind direction

Each site in the study was equipped with TWO CMS solutions

Each site in the study was equipped with TWO CMS solutions

Experimental setup across six Oil & Gas sites

Experimental setup across six Oil & Gas sites

We focus on the Solution A to Solution B comparison here for brevity.

Separation of effect of platform from inversion algorithm

Comparison of concentration data for near co-located sensors

Concentration value from nearly colocated **CMS solutions** in time

Finding #1: Spikes in concentration data aligned in time,

Comparison of concentration data for near co-located sensors

Finding #1: Spikes in concentration data aligned in time, but distributions have different characteristics.

Localization estimates using the open-source DLQ algorithm

Finding #2: Localization estimates vary highly at 30-minute scale but begin to align over longer time periods.

Comparison of quantification estimates at 30-minute scale

Emission rate estimates from **proprietary algorithm**

Finding #3: Quantification estimates vary highly at the 30-minute scale.

Comparison of quantification estimates

Emission rate estimates from proprietary algorithm

Emission rate estimates from open-source DLQ algorithm

Finding #3: Quantification estimates vary highly at the 30-minute scale.

Comparison of quantification estimates at monthly scale

Finding #4: Quantification estimates are more aligned at the month-scale,

Comparison of quantification estimates at monthly scale

Finding #4: Quantification estimates are more aligned at the month-scale, especially when controlling for the inversion algorithm

Comparison to aerial data

Δ

7

Finding #5: CMS estimates relatively close to aerial estimates when averaged

Comparison across similar sites

Finding #6: Similar sites do not necessarily have similar emission characteristics

Main Conclusions

- Raw CMS concentration data have different characteristics depending on sensor type and CMS solution.
- There is high variability in both localization and rate estimates at the 30-minute scale, however longer-term aggregates (e.g., multi-hour) provide more meaningful information.
- Emission location and quantification estimates from CMS broadly agree in distribution when aggregated over months, meaning that on longer time scales (e.g., for annual-inventories) the estimates are less sensitive to the type of CMS deployed.
- Differences between CMS derived rate estimates are mainly driven by the inversion algorithm, rather than the sensor platform (sensor type and arrangement)
- Comparing CMS-based measurement informed inventories to bottom-up inventories reveals that similar oil and gas sites do not necessarily have the same emission characteristics.

Thanks! Any questions: hammerling@mines.edu

Intercomparison of three continuous monitoring systems on operating oil and gas sites.

William Daniels*, Spencer Kidd*, Lydia (Shuting) Yang, Shannon Stokes, Arvind Ravikumar, Dorit Hammerling, under review, (2024). Preprint