

Title: A Bayesian hierarchical model for localizing and quantifying multi-source methane emissions on oil and gas sites using continuous monitoring systems

ABSTRACT

Continuous monitoring systems (CMS) measure methane concentrations in near real time on a given oil and gas site. This makes them particularly well suited for characterizing intermittent (i.e., sometimes on, sometimes off) emissions at the site-level. However, an inversion algorithm is required to translate the raw concentration measurements from the CMS into estimates of emission source location and rate. Here we describe a Bayesian hierarchical model for performing this task. We highlight the model's suitability in two different use-cases: 1) alerting, where accurate localization estimates are used to inform leak mitigation activities, and 2) inventory development, where the long-term average of the inferred emission rates is used to calculate the annualized emissions inventory at the individual site-level.

1. Background METEC NW CMS sensors NO East West Wellhead Separator West Separator

- Intermittent emissions are hard to characterize at the site-level using only survey-based technologies.
- Continuous monitoring systems (CMS) measure methane concentration in near real time, and hence can capture intermittency at the site-level.
- However, an inversion algorithm is needed to translate raw CMS concentration measurements into emission source location and rate estimates.

2. Objective

- Previous work established an open-source method for estimating emission source location and rate under the assumption of a single emission source.
- Here we attempt to characterize multisource emissions. We do so by developing a **Bayesian** hierarchical inverse model.

AGU 2024 Poster Number: A21K-1901

- 1. "Spike-and-slab" prior on rate estimates allows for 0 kg/hr estimates, which is often the case.
- 2. Exponential prior on the non-zero rates forces non-negativity, as methane sinks are unlikely on most oil and gas sites.
- 3. A separate probability of emitting can be specified for each source, as some equipment may leak more frequently than others.

Emission rates for each source Correlation matrix to account for autocorrelated errors $z_i = 0$ $z_i \sim \text{Bernoulli}(\theta_i)$ late

William Daniels

PhD Candidate **Applied Mathematics and Statistics** Colorado School of Mines wdaniels@mines.edu

Dr. Dorit Hammerling Associate Professor **Applied Mathematics and Statistics** Colorado School of Mines

- emitting sources

4. Results

• We evaluate the model on 337 multisource controlled releases conducted at METEC. For each release, there are five possible emission sources.

• **Result #1:** Model works in an alerting use-case, as it can successfully identify emitting and non-

• **Result #2:** Model works in an inventory use-case, as it produces unbiased emission rate estimates

The University of Texas at Austin Cockrell School of Engineering