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Problem Setup
• Continuous monitoring systems (CMS) 
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Problem Setup
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Problem Setup
• A data-driven algorithm to optimize sensor placement for best emission 

detection
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Experiment Data
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METEC Facility, 5 potential emission sources
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Algorithm

Generate emission scenarios

Set possible sensor locations

Simulate concentrations & Check detection

Optimize sensor placement

8



Optimization 
algorithm

Wind data

Emission 
characteristics

Available
sensor locations

User’s inputs (site-specific) Output: optimal 
sensor placement

Step 1 Generate Emission Scenarios
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Step 1 Generate Emission Scenarios 

A combination of 
• wind speed time series
• wind direction time series
• emission source location
• emission rate

defines an emission scenario.

• Estimate probability distributions of wind & emission to sample →
38,130 emission scenarios

Wind

20 [kg/h]

Active source Inactive source
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Optimization 
algorithm

Emission scenarios
(# = 38,130)

Available
sensor locations

User’s inputs (site-specific) Output: optimal 
sensor placement

Step 2 Set Possible Sensor Locations

11



Step 2 Possible Sensor  Locations

resolution = 1 m for Northing & Easting; = 0.5 m for vertical
# possible locations = 96,840

METEC site (3D)METEC site (2D)
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Optimization 
algorithm

Emission scenarios
(# = 38,130)

Sensor locations
(# = 96,840)

User’s inputs (site-specific) Output: optimal 
sensor placement

Step 3 Concentration Simulation & 
Detection

13



Step 3.1 Gaussian puff 
simulation
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Step 3.2 Detection

Example of simulated concentrations and detection for 
Emission Scenario 𝑗 at Sensor Location 𝑖
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Optimization 
algorithm

Emission scenarios
(# = 38,130)

Sensor locations
(# = 96,840)

User’s inputs (site-specific) Output: optimal 
sensor placement

Step 4 Optimize Sensor Placement
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Step 4 Optimization

Rows of 𝐷: Sensor Locations (SL)

Cols of 𝐷: Emission Scenarios (ES)

𝐷!" = 0, if SL# can detect ES"; 
𝐷!" = 1, otherwise

Detection Matrix 𝐷
N = 96,840;𝑀 = 38,130
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Evolutionary Algorithms
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Pareto Optimization
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Results
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Results: Best 8-sensor placement

19

1.5 m 4.5 m

1.0 m

2.0 m

2.0 m

2.0 m

2.0 m

2.0 m2.0 m

2.0 m 2.0 m

2.0 m

4.5 m



Results: Budget vs. coverage
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Visit my iPoster 
for more details!

Thank you for 
attending! 
Questions?
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Back up 
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Experiment Data

Wind Data on METEC, February through May 2022
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Step 4.2 Pareto Optimization & EA
Pareto Optimization

Objectives: 
Find a subset of rows (a solution) 
from the detection matrix to
• maximize emission scenario 

coverage.
• minimize the size of the subset.

Evolutionary Algorithms
Process:
1. Randomly initialize a population 

of solutions.
2. Propose new solutions by 

perturbing existing solutions.
3. Update the population by 

eliminating worse solutions.
4. Repeat Step 2 & 3 until converge.
5. Return the best 𝑘-size solution.

Exhaustive search and standard 
linear programming algorithms are 
impossible for large-scale problem!



Conclusions & Future Work

• Developed a data-driven algorithm for sensor placement more 
accurate and efficient than traditional methods.
• The algorithm's modularity ensures adaptability to various monitoring 

needs.
• Optimized for solving large-scale problems efficiently.
• To implement a generative model for better approximation of wind 

distributions, thereby expanding the emission scenario database.
• To investigate advanced data embedding techniques to manage and 

solve problems of greater scale.
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Close sensor locations
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Figure 9 in Klise et al. (2020)



Test EA on synthetic large matrix

• nrows = ncols = 100,000
• k = 10, randomly 

placement in the big 
matrix
• Test on 30 cases and run 

10 EA algorithm for each 
case
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Optimality Guarantee

• In theory, we prove that for subset selection with monotone 
objective functions, PORSS can achieve the optimal 
polynomial-time approximation guarantee, 1 − 𝑒! where 𝛾
is the submodularity ratio measuring how close your 
objective function is to submodularity. 
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Related Work
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Klise et al. (2020) Our work

# emission scenarios 1,200 ≈ 40,000

# possible sensor locations ≈ 2,500 ≈ 100,000

Forward model Gaussian plume Gaussian puff

Optimization algorithm Mixed-integer 
linear 
programming

Pareto optimization 
using evolutionary 
algorithm (EA)



Pareto Optimization Algorithm

• General subset selection problem
Given all items 𝑉 = 𝑣! , 𝑖 = 1,2, … ,𝑁, an objective function 𝑔 and a budget 𝑘, 
to find a subset of at most 𝑘 items maximizing 𝑔, i.e.,

argmax
"⊆$

𝑔(𝑆) s.t. 𝑆 ≤ 𝑘

§ In our case, 𝑉 is the set of rows of the detection matrix 𝐷
§ 𝑔 is the number of 0s in the column product of 𝐷% (the 𝑘-row submatrix of 𝐷) 
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Pareto Optimization Algorithm

• Pareto Optimization
§ Find optimal solutions to two conflicting objectives

argmax
$⊆ &,( !

(𝑔( 𝑥 , 𝑔) 𝑥 )

where

𝑔( 𝑥 = A −∞, 𝑥 ≥ 2𝑘
𝑔 𝑥 , otherwise 𝑔) 𝑥 = −|𝑥|
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Algorithm
Input: detection matrix 𝐷; objective function 𝑔; budget 𝑘
Parameters: the number 𝐼 of iterations
Output: a subset of 𝑘 rows of 𝐷
Process:

Let 𝑥 = 0 !, 𝑃 = 𝑥 and 𝑡 = 0
While 𝑡 < 𝑇:

Select 𝑥, 𝑦 from 𝑃 randomly with replacement
Apply recombination on 𝑥, 𝑦 to generate 𝑥′, 𝑦′
Apply bit-wise mutation on  𝑥′, 𝑦′ to generate 𝑥′′, 𝑦′′
for each 𝑧 ∈ 𝑥"", 𝑦"" :

if ∄𝑢 ∈ 𝑃 such that 𝑢 ≻ 𝑧:
𝑃 = (𝑃\{𝑢 ∈ 𝑃|𝑢 ≺ 𝑧}) ∪ {𝑧}

Check early stop
𝑡 = 𝑡 + 1

return argmax
#∈%, # '(

𝑔(𝑥)

33

𝑢 ≻ 𝑧	 ⟺
𝑔& 𝑢 > 𝑔& 𝑧 	&	𝑔'(𝑢) ≥ 𝑔'(𝑧)

or
𝑔& 𝑢 ≥ 𝑔& 𝑧 	&	𝑔'(𝑢) > 𝑔'(𝑧)



EA vs. Greedy Search

• EA vs. greedy search
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Experiments & Results - robustness

Use a different set 
of 10,000 emission 
scenarios to validate 
the performance of 
the optimal sensor 
placement.
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Why some scenarios are always 
undetected?
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Experiments & Results – fence line placement
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Results: Best 𝑘-sensor placement

38



Best-1 Sensor Placement
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Best-2 Sensor Placement
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Best-3 Sensor Placement

41



Best-4 Sensor Placement
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Best-5 Sensor Placement

43



Best-6 Sensor Placement
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Best-7 Sensor Placement
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Best-8 Sensor Placement
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Best-9 Sensor Placement

47



Best-10 Sensor Placement
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