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Abstract  15 

Methane mitigation from the oil and gas (O&G) sector represents a key near-term global climate action 16 

opportunity. The effectiveness of mitigation strategies rests on the ability to quantify spatially and 17 

temporally varying methane emissions more accurately than existing approaches. Advances in technologies 18 

have enabled improvements in methane emissions measurements and monitoring, In this work, we 19 

demonstrate a quantification, monitoring, reporting, and verification framework that pairs snapshot 20 

measurements with continuous emissions monitoring systems (CEMS) to reconcile measurements with 21 

inventory estimates and account for intermittent emissions events. We find site-level emissions exhibit 22 

significant intra-day and daily emissions variation. Snapshot measurements of methane can span over three 23 

orders of magnitude and may have limited application in developing annualized inventory estimates. 24 

Consequently, while official inventories underestimate methane emissions on average, emissions at 25 

individual facilities can be lower than inventory estimates. Using CEMS, we characterize distributions of 26 

frequency and duration of intermittent emission events. Technologies that allow high sampling frequency 27 

such as CEMS, paired with a mechanistic understanding of facility-level events is key to accurate 28 

accounting of short-duration, episodic, and high-volume events that are often missed in snapshot surveys, 29 

and to scale snapshot measurements to annualized emissions estimates.  30 
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1. Introduction 36 

Reducing methane emissions from the oil and gas (O&G) supply chain is a key component of near-term 37 

climate action [1]. Over 100 countries have pledged to reduce methane emissions 30% by 2030 as part of 38 

the United Nations 2021 Conference of Parties [2]. Innovation in technologies to quantify methane 39 

emissions can now enable target-based approaches to emissions mitigation and differentiation across 40 

operators. The potential for these new mitigation approaches has led companies, investors, consumers, and 41 

governments to focus on finding ways to accurately monitor, measure, and mitigate methane emissions [3]–42 

[5]. Characterizing the GHG intensity of individual supply chains through a life cycle approach is critical 43 

for informing differentiated gas supplies and policy frameworks that depend on accurate emissions 44 

estimation [6]. The success of these new approaches, therefore, rests on our ability to accurately measure 45 

methane emissions that accounts for spatial and temporal variations and the skewed nature of emission 46 

distributions [7].  47 

Recent advances in methane measurement technology have improved our understanding of methane 48 

emissions [8]–[12]. Large-scale aerial surveys in the Permian basin demonstrate the importance of 49 

identifying intermittent super-emitters [13], [14]. Cusworth et al. showed that the average persistence of 50 

large emissions is only about 26%, suggesting the need for continuous measurements to detect and mitigate 51 

such events [14]. A detailed study of temporal variations in methane emissions suggests potential impact 52 

of measurement time on emissions estimates where one-time events like liquids unloadings preferentially 53 

occur during certain periods of the work-day [15]–[18]. The effectiveness of and trust in approaches to 54 

address methane emissions, therefore, depends on the availability of accurate methane emissions estimates 55 

that vary in frequency, duration, and across geographic locations. 56 

Empirical measurements of methane have also highlighted the limits of conventional inventory 57 

development using activity and emissions factors [19]. Analysis of recent field measurements across O&G 58 

production facilities in the US and Canada show that, on average, measured emissions are approximately 59 

60% higher than official inventory estimates [20], [21]. This is because engineering-based methods rely on 60 

component-level activity and emissions factors that are often outdated or poorly characterized [22]. A 61 

decomposition study of this discrepancy between measurements and inventory pointed to an 62 

underestimation of emission factors associated with tanks and equipment leaks [19]. Most bottom-up, 63 

component-level studies of methane emissions show highly skewed distributions – from sites that do not 64 

have any detectable emission to sites with emissions orders of magnitude larger than the sample average 65 

[7], [23]–[25]. Furthermore, intra-day variations in emissions from specific equipment like tanks have also 66 

been observed [16]. Thus, except in simple site configurations, low frequency or snapshot measurements 67 

tend to have high variability and are unsuitable for asset-level differentiation. Advances in technologies 68 

such as continuous emissions monitoring systems (CEMS) could provide the high-resolution data needed 69 

to characterize temporal variability in methane emissions [26]–[28]. Recent research has also shown a 70 

systematic variation in emissions over time as wells get older and the composition of oil, gas, and liquids 71 

change [29], [30]. Compared to a conventional inventory, snapshot measurements may result in either 72 

under- or overestimation of site-level emissions. To develop a more accurate annualized emissions 73 

inventory estimate, measurements require high temporal resolution to detect and quantify intermittent 74 

emission events [29], [31]. 75 

Many jurisdictions have used leak detection and repair (LDAR) programs to mitigate methane emissions 76 

from O&G operations [32]–[34]. Recent randomized controlled experiments suggest that these programs 77 
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are effective in reducing fugitive methane emissions [35], [36]. However, several recent studies note that 78 

the majority of methane emissions come from large equipment (e.g., storage tanks), malfunctioning or 79 

episodic sources that are not typically considered leaks [19], [37], [38]. These abnormal emissions have 80 

limited or no “monitoring” benefits from typical LDAR programs nor can they reliably be independently 81 

verified solely by top-down aerial or drone monitoring methods due to low sampling frequency. Thus, no 82 

currently existing technology is sufficient on its own for capturing the temporal fluctuations of methane 83 

emissions, which is necessary to develop accurate annual emissions estimates. 84 

To address gaps in typical LDAR programs, new frameworks such as “responsible natural gas” or “certified 85 

natural gas” have emerged as a mechanism to assure customers of low methane leakage across the supply 86 

chain. However, no empirical measurement protocol has yet been demonstrated that can provide reasonably 87 

accurate supply chain specific methane emission estimates necessary to assess such claims. The U.S. federal 88 

government has created an inter-agency task force to identify and deploy tools to measure, monitor, report, 89 

and verify GHG emissions [3]. Yet, currently available frameworks do not provide the level of transparency 90 

and rigor to be able to build trust among the public through independent, third-party verification.  91 

In this work, using multi-scale measurements of methane emissions across three U.S. natural gas basins, 92 

we demonstrate the role of high spatial and temporal resolution data in advancing target-based approaches 93 

to emissions mitigation. Through this multi-basin field study, we describe how a measurement framework 94 

that accounts for spatial and temporal variations in methane emissions can help develop accurate emissions 95 

inventory estimates. Importantly, this study could serve as a guideline for a universal framework for 96 

measurement-based protocols. Stakeholders in the O&G industry, government, and financial organizations 97 

can adapt this framework for more representative emissions estimation across the supply chain.  98 

2. Methods  99 

The multi-scale measurement approach is embedded within a quantification, monitoring, reporting, and 100 
verification (QMRV) protocol. This protocol combines different elements of a measurement-based 101 
framework that together provides accurate inventory estimates. These elements include emissions 102 
quantification through multi-scale measurements, analysis and monitoring of intermittent emission activity, 103 
detailed reports on site operations and measurement schedule, and an independent verification process. 104 
Details of the QMRV protocol are provided in the SI (see SI section S1). Here, we describe the measurement 105 
framework and results that are central to the QMRV protocol. The measurements were conducted in two 106 
phases – a baseline phase to estimate emissions at all sites prior to the study beginning and an enhanced 107 
monitoring phase that involved collection of high spatial and temporal resolution data at each site.  108 

2.1. Design 109 

A total of 38 facilities from five natural gas producers participated in the study, referred to as the QMRV 110 

project, across the Marcellus, Haynesville, and Permian basins, accounting for over 0.4 billion cubic feet 111 

per day (bcfd) in the aggregate. The QMRV project consisted of three phases: baseline emissions 112 

measurements with multi-scale methods, enhanced monitoring using CEMS for a period of 6 months, and 113 

an end-of-project aerial snapshot measurement (SI section S1). We deployed four snapshot emission 114 

measurement technologies concurrently at these enrolled facilities as part of the QMRV project, including 115 

satellite measurements during the baseline phase, and two CEMS technologies for continuous monitoring 116 

during the enhanced monitoring phase as part of the QMRV project [4].  117 
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The snapshot measurements include an optical gas imaging (OGI) camera paired with a Hi-Flow sampler, 118 

aerial mass balance technology using a drone and a meteorological station conducted by SeekOps, Inc. 119 

(“SeekOps”), a LiDAR plume identification system using an aircraft conducted by Bridger Photonics 120 

(“Bridger”). All three technologies have undergone controlled tests and field trials in the past with the 121 

performance data made public through peer-reviewed studies [8], [39]–[41]. In addition, satellite 122 

measurements were conducted concurrently at the enrolled assets when weather conditions allowed. The 123 

OGI technology and SeekOps require site access to measure emissions, whereas Bridger does not require 124 

site access or operator presence to conduct their measurements. Because of the speed of aerial surveys, 125 

Bridger was tasked with observing emissions from non-enrolled assets operated by the producers 126 

participating in the QMRV project, to assess if emissions at sites selected for monitoring are representative 127 

of the producers’ local assets. OGI with Hi-Flow measures emissions at the component-level, similar to 128 

conventional LDAR programs and can distinguish between leak and vent emissions. Facility-level 129 

emissions are calculated by aggregating individual equipment-level emissions. SeekOps and Bridger detect 130 

and quantify emissions at the equipment-level and typically do not distinguish between leaks and vents. 131 

Facility level emissions are estimated by aggregating individual equipment-level emissions. In this paper, 132 

we have anonymized the basin names and present results from the baseline phase and key observations 133 

from the enhanced monitoring phase of the project. 134 

2.2. Field measurements 135 

The OGI, SeekOps, and Bridger teams collected data from 8 facilities in Basin A from June 20-24, 2021, 136 
from 5 facilities in Basin B from July 26-28 and August 3, 2021, and from 25 facilities in Basin C from 137 
August 23-26, 2021. Multiple surveys were conducted by each measurement technology, depending on 138 
survey speed and time, and were designed to be contemporaneous to ensure comparability of the measured 139 
data. Seek Ops, which typically takes 1 – 3 hours per facility, completed up to 2 surveys of each site. Bridger 140 
Photonics, being an aerial technology, measured each site 6 – 11 times across all basins. Several recent 141 
peer-reviewed studies describe the performance parameters of these technologies in detail [8], [41]. 142 
Emissions attribution was done by direct data collection from technologies and cross-referencing with 143 
operator insight and field photos. The OGI+Hi-Flow team recorded the equipment associated with emitting 144 
components in their survey reports. The SeekOps team reported emissions by equipment group in basins A 145 
and B. In basin C, SeekOps was unable to measure at the equipment-level due to safety concerns and 146 
therefore only provided site-level emissions data. The Bridger team reported emissions by location on site 147 
without source identification to specific equipment. To attribute emissions, we compared the field photos 148 
from Bridger against those from SeekOps and Google Earth and manually labeled the equipment for each 149 
emission sources. Satellite-based observations were conducted at the 38 facilities. However, the 150 
instrumentation’s sensitivity to cloud cover and aerosols in the atmosphere and surface features like water 151 
bodies resulted in few successful measurements. A satellite measurement is successful when conditions 152 
allow for data acquisition, regardless of whether an emission is identified. During the baseline phase, 153 
satellite data collected on days with favorable environmental and atmospheric conditions did not see any 154 
emissions from any of the enrolled facilities, likely because of the high detection thresholds for satellite-155 
based emissions detection.  156 

CEMS were installed at facilities in basin A and basin B for a 6-month period to assess temporal variations 157 
in methane emissions and estimate the frequency and duration of intermittent emission events. Two separate 158 
solutions were installed – Sensor A (laser absorption spectroscopy) and Sensor B (metal-oxide sensor). The 159 
number of sensors at each site varied from about 3 to 6 based on the size of the site, number of equipment 160 
with potential to emit methane, and prevailing wind direction and local geography. 161 
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2.3. Inventory estimation  162 

Site-level measurements from SeekOps and Bridger are used to develop measurement-informed inventory 163 
(MII) estimations. MII refers to a composite emission estimate for a site based on measurements from all 164 
technologies that surveyed the site. Measurements from OGI are not included in these estimates because 165 
OGI does not capture all emission sources at a facility such as engine slip and hence underestimates site-166 
level emissions (see SI section S2). SeekOps provided a summary report of measured emissions and wind-167 
roses with detailed notes at each site. Measurements from all equipment on each facility were aggregated 168 
to calculate the full facility-level emission rate. A high-resolution field photo was also provided for each 169 
facility. Bridger typically performed 2 to 3 rounds of measurements per day for every site and provided a 170 
detailed breakdown of emissions measured from each flyover by emissions location. Bridger conducted 171 
multiple rounds of measurements throughout the day as well as multiple passes over the same facility within 172 
a few minutes during each round of measurement. We first calculate the average emission rate from an 173 
equipment in each round by averaging across multiple passes. Emissions across all equipment were 174 
aggregated for each round to estimate site-level emissions. Finally, emissions across multiple rounds on the 175 
same day were averaged to estimate a daily average emission rate for each facility.  176 

In addition to measurements, each operator was also required to submit conventional emissions inventory 177 

reports, estimated through EPA’s GHG Reporting Program (GHGRP) methods for individual sources [42]. 178 

Emissions that are known to be excluded in the GHGRP were also provided as supplementary information 179 

to allow comparison of measured emissions with inventory estimates (see SI section S3).  180 

3. Results 181 

Each measurement by a technology is assumed to be an independent and true (within measurement 182 
uncertainty and technology limitations) snapshot estimate of methane emissions. Thus, multiple 183 
measurements at a single facility are treated as independent and equally valid data points and are averaged 184 
with equal weight to all other measurements. Because measurements by both SeekOps and Bridger were 185 
contemporaneous, potential diurnal variations in emissions is not expected to bias this approach.  186 

3.1. Inventory estimates vs. measurements  187 

Methane emissions vary significantly in time and individual or a few snapshot measurements alone are 188 

insufficient to estimate an annualized emissions estimate. The significance of accounting for spatial and 189 

temporal variations in emissions through multiscale, contemporaneous measurements has been documented 190 

in the literature [16], [43]. Conventional engineering-based inventory development methods, such as the 191 

EPA GHGRP employ outdated emission factors and do not account for emissions variations across assets, 192 

especially from high-emitting or super-emitting events, resulting in significant underestimation compared 193 

to measurements [19].   Furthermore, if all operators are required to use identical national-level emissions 194 

factors when developing engineering-based inventory estimates, differentiation across operators is then 195 

strictly limited to differences in activity data without any consideration for design, operational, or 196 

maintenance practices.  Thus, conventional engineering-based inventory estimates of emissions have 197 

limited application in target-based approaches to emissions reduction, such as supply-chain or asset-specific 198 

certification. 199 

Figure 1 shows a parity chart of individual site-level methane emissions across three basins measured using 200 

the aerial (Bridger) and drone-based (SeekOps) survey platforms as well as the operator-estimated methane 201 

inventory calculated using GHGRP methodology. We make several critical observations. First, site-level 202 

methane emissions measured through snapshot surveys span over three orders of magnitude – from less 203 
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than 50 standard cubic feet per hour (scfh) to over 10,000 scfh. This suggest that conventional inventory 204 

estimates are not representative of site-level emission on the time scale of hours to days. Second, average 205 

site-level emissions measured across each basin are higher than inventory estimates, a finding in line with 206 

recent published studies [20], [21]. For example, average site-level emissions, averaged across both 207 

measurement technologies, in basin A, basin B, and basin C are 1081 scfh, 473 scfh, and 374 scfh, 208 

respectively. By comparison, the average GHGRP-based inventory estimates in the three basins are 201 209 

scfh, 546 scfh, and 151 scfh, respectively. In basin B, the GHGRP-based inventory estimate is higher than 210 

measurement average because of one site whose inventory estimate was based on 2020 values with an 211 

unusually large number of unloading operations not seen during measurements. Excluding this site, the 212 

average measurement informed inventory and GHGRP-based inventory estimate of all remaining sites are 213 

586 scfh and 488 scfh, respectively. Third, significant variation in site-level emissions implies that 214 

measured individual snapshot emissions can be lower or higher than inventory estimates, depending on the 215 

time of measurement. In basin A, 2 of 8 sites have measured emissions lower than inventory estimates as 216 

measured by both Bridger and SeekOps. In basin B, all five sites have measured emissions by Bridger lower 217 

than inventory estimates. On the other hand, GHGRP-based estimates of emissions in 7 out of 25 sites in 218 

basin C are consistently at least one order of magnitude smaller than measured emissions. Thus, while it is 219 

true that aggregate measurement-based estimates of emissions are higher than inventory estimates, they are 220 

not sufficient for site-specific inventory development. This can be attributed to the use of static emissions 221 

factors in inventory estimates associated with time varying emission sources such as fugitives or tanks. 222 

Measuring the frequency, duration, and volume of such time varying sources is critical to developing quasi 223 

real-time, site-specific emissions estimates. Fourth, site-level emissions exhibit significant intra-day 224 

variation. Repeat measurements of site-level measurements by Bridger show up to an order of magnitude 225 

variation in emissions – these are not restricted to specific site-types but generally observed across all three 226 

basins. For example, one site in Basin B exhibited emissions between 51 scfh and 1062 scfh, with an 227 

inventory estimate of 328 scfh.  228 

Figure 1: Parity chart of individual, aggregate, site-level emissions (y-axis) as measured by Bridger 229 

Photonics (Figure 1a) and SeekOps (Figure 1b) in comparison with GHGRP-based inventory estimates 230 
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(x-axis) for each of the sites in basins A (turquoise circles), B (yellow squares), and C (purple triangles). 231 

All measurements were conducted in one week at each basin. Error bars indicate measurement 232 

uncertainty of Bridger and SeekOps technologies as determined through controlled release tests [9], [41].   233 

3.2. Equipment-level temporal variation in emissions  234 

Site-level temporal variation in emissions can be attributed, in part, to specific equipment groups. Figure 2 235 

shows temporal variation in tank emissions from sites in basin A and B measured by both Bridger and 236 

SeekOps. Recent field studies of methane emissions have demonstrated that tanks are one of the largest 237 

sources of methane emissions from upstream O&G facilities [35], [37]. Measurements in both basin A and 238 

B show that distribution of individual emissions measurement from tanks span three orders of magnitude – 239 

from as low as 10 scfh to around 10,000 scfh. Averaging emissions from each site across all measurements, 240 

we calculate average tank emission rates of 597 scfh and 239 scfh in basin A and basin B, respectively. 241 

Thus, individual estimates of tanks emissions can be multiple standard deviations away from the time-242 

averaged emissions estimate, indicating that snapshot measurements will be insufficient to develop accurate 243 

annualized emissions estimates. More importantly, reconciling top-down measurements and bottom-up 244 

inventory estimates would be impossible without an understanding of the frequency and duration of 245 

emissions events from equipment groups such as tanks. Variations in tank emissions may be caused by 246 

process conditions such as the frequency and volume of unloading operations from wells and separators, 247 

malfunctioning equipment, or maintenance issues. In addition, ambient temperature and liquid levels in 248 

tanks can also affect observed methane emissions. Establishing the bounds of emissions variation through 249 

monitoring is key to developing updated emissions inventory estimates. It is hence paramount to effectively 250 

estimate the duration and frequency of such intermittent emissions, which requires the use of a high 251 

sampling frequency measurement system.  252 

 253 

Figure 2: Aggregate tank-level methane emissions measurements by Bridger (red circles) and SeekOps 254 

(blue triangles) at all sites in basin A and basin B. Datapoints show both repeat measurements conducted 255 

on the same day as well as multi-day measurements at a site. Inventory estimates at these sites are 256 

between 40 and 800 scfh (see Figure 1).  257 
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The variation in tank emissions shown in Figure 2 is tightly linked to total site-level emissions. Figure 3 258 

shows total site-level emissions in basins A and B, disaggregated by three major equipment types typically 259 

seen at upstream production facilities – tanks, gas processing units (GPU), and wellheads. Each column 260 

represents a round of measurement by either Bridger or SeekOps. Emissions not associated with these three 261 

major equipment categories are classified under ‘other’ – these can include piping, meters, or other co-262 

located equipment. We make a few important observations. First, emissions vary by about an order of 263 

magnitude across basins, with basin A exhibiting significant higher emissions associated with tanks 264 

compared to basin B. Second, tank emissions dominate total emissions in both basins, contributing 58% 265 

and 50% of total emission in basin A and basin B, respectively. Thus, variability in site-level emissions is 266 

dominated by variability in tank-related emissions. Third, basin characteristics can significantly affect the 267 

composition of equipment-level emissions. Although tanks contribute the majority of emissions in both 268 

basins, GPUs contribute only 14% of total emissions in basin A but 33% of total emissions in basin B. 269 

Thus, a non-dominant equipment type in one basin could be a dominant equipment-type in another, 270 

underscoring the need to understand basin characteristics to inform measurement and sampling procedures.  271 

 272 

 273 

Figure 3: Site-level emissions in basin A (top) and basin B (bottom) disaggregated by three major 274 

equipment groups: tanks (turquoise), gas processing units (pale green), wellheads (beige), and other 275 

equipment on site (pink). Each bar represents a single round of measurement by either Bridger or 276 

SeekOps and is sorted in descending order of site-level emissions. Tanks are the dominant emission 277 

source in both basins, although gas processing units contribute a larger share of total emissions in basin 278 

B (33%), compared to basin A (14%).  279 

3.3. Intra-day temporal variations 280 

Intra-day variation in methane emissions can be significant. These can arise from process conditions such 281 

as separator dumps or liquid levels on tanks, environmental conditions such as ambient temperature, or 282 
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equipment failure such as broken level indicators and thief hatches. Figure 4 shows time series of same day 283 

measurements of tank emissions as recorded by Bridger and SeekOps across basins A and B. Most 284 

measurements occurred within a span of 8 hours at each site and varied by over an order of magnitude 285 

within a given day. Specifically, Site S3 exhibited the greatest variation with a low measurement below 286 

detection threshold and a high measurement of over 15,000 scfh. Follow up with the operator revealed the 287 

source of a large emission in basin B to be a stuck dump valve event, with a maximum emission duration 288 

of 12 hours before it was fixed. Thus, the ability to identify short duration but high-volume events is critical 289 

to develop accurate annualized emissions inventories. Multi-pass measurements with aerial technologies 290 

reveal the importance of characterizing intra-day emission variations. The key to explaining any 291 

discrepancy between measurements and emission inventory estimates requires an improved understanding 292 

of the frequency and duration of emissions from variable sources such as tanks.  293 

 294 

Figure 4. Time series of tank-related methane emissions observed on each site by Bridger Photonics (red 295 

circles) and SeekOps (blue triangles), where each row represents a site. The area of the dots represents 296 

volume of emissions. All times are in local time of measurement.    297 

3.4. Using continuous emissions monitoring system (CEMS) to estimate frequency and duration 298 

of intermittent emission events  299 

Repeated snapshot methane measurements using SeekOps and Bridger technologies demonstrate the 300 

importance of understanding the nature of temporal variations to develop accurate annualized inventory 301 

estimates. Without data on the frequency and duration of intermittent emissions events, it would be 302 

impossible to directly compare methane emissions seen by one or a few top-down snapshot measurements 303 

to an annualized inventory. For example, annual average emissions at a site with significant contribution 304 

from uncontrolled tank emissions (Figure 3, basin A) will be strongly correlated with the frequency and 305 
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duration of tank flash emissions. A snapshot aerial or drone-based measurement that happens to capture an 306 

intermittent emission event may not provide an accurate annualized emission estimate for the site, as 307 

emissions events may be infrequent. This top-down measurement needs to be scaled by the typical 308 

frequency and duration of events on the site to make a direct comparison to the annualized inventory. 309 

CEMS provide a means of estimating the frequency and duration of common emission events on a site-by-310 

site basis (see methods and SI section S4.3). These sensors provide near-continuous concentration 311 

measurements without needing a human operator. While reliable site-level or equipment-specific emission 312 

quantification is still an open problem, current CEMS can act as an indicator for methane emission events. 313 

The CEMS used in this study were used as event detection sensors as quantification was not available.  314 

As outlined above, understanding the distribution of methane emission event frequencies and durations is 315 

critical for accurate scaling to annualized inventories for production sites. We outline a framework for doing 316 

so here and show initial results. First, we use CEMS to record ambient methane concentrations at 317 

participating facilities. Typical CEMS technology provides 1-minute averaged data on atmospheric 318 

methane concentration, local wind speed, and wind direction. Second, we translate these concentration data 319 

into a log of emission events by applying a spike detection algorithm to the maximum concentration reading 320 

across sensors on a minute-by-minute basis. Working with the maximum across sensors simplifies the 321 

problem by collapsing multiple signals into one while preserving the spikes that we are interested in 322 

analyzing. The spike detection algorithm uses a gradient-based method to flag elevated methane 323 

concentrations and group them into events, which can be later filtered by their background-corrected 324 

amplitude. This algorithm does not distinguish between operational and fugitive events. A detailed 325 

description of the spike detection algorithm can be found in the SI section S4.3. Third, after recording a 326 

sufficient number of events, we estimate the distribution of time-between-events (referred to as “wait 327 

times”) and event durations. The advantage of using this probabilistic framework is that the distribution of 328 

event wait times and durations can be refined as more data are collected, thereby helping develop custom, 329 

site-specific distributions over time.  Furthermore, we can use Monte Carlo methods to sample from these 330 

empirical distributions and scale the less-frequent top-down measurements that happen to capture 331 

intermittent emission events. 332 

Figure 5 shows the empirical distribution of emission event durations and wait times for all emission events 333 

identified by the spike detection algorithm using a background-corrected amplitude threshold of 20 parts 334 

per million (ppm). This value was selected to isolate concentration spikes that were notably higher than 335 

background readings. Note, however, that thresholds from 10-30 ppm were tested, and the conclusions we 336 

present here are consistent across thresholds (see SI section S4.2 for details). Also, no CEMS data were 337 

collected in Basin C. 338 
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 339 

Figure 5. Empirical distributions of emission event durations (Figure 5a and 5c) and wait times (Figure 340 

5b and 5d) between subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and 341 

basin B (bottom panel, purple). CEMS data spans October 2021 to March 2022. Note that a wait time of 342 

78 days was omitted from subfigure (b) for visual clarity. 343 

Figure 5 shows that many CEMS-detected emission events are short duration, with 49% of the events from 344 

Basin A and 76% of events from Basin B lasting less than 2 hours. Based on operational and supervisory 345 

control and data acquisition (SCADA) data from Basin B, many of these short-lived events could be 346 

attributed to blowdowns and welldown events. This highlights the importance of high frequency 347 

measurements when developing accurate emissions estimates of subsets of an oil and gas supply chain, as 348 

monthly or even weekly measurements are likely to miss these short-lived events. While this matters less 349 

for basin-level average emissions estimates, it is essential in small sample size applications such as 350 

individual supply chains or assessments for small geographic regions. Furthermore, the slightly heavier tail 351 

in subfigure (a) compared to subfigure (c) indicates that events (i.e., elevated methane concentrations) tend 352 

to last longer in Basin A than Basin B. Finally, subfigures (b) and (d) show that events in Basin A tend to 353 

occur more frequently than events in Basin B, with a median wait time between events of 1.1 days in Basin 354 

A and 1.9 days in Basin B. 355 

This analysis is currently performed at the site-level and aggregated to the basin-level. As more data are 356 

aggregated from each site, the event duration and wait time distributions can be estimated for specific types 357 

of emission events such as blowdowns, thief hatch leaks, or liquids unloading events. Using current CEMS 358 

technology, this will require operator insight (e.g., operation logs or SCADA data) to translate the list of 359 

events into a list of likely sources. This more detailed approach will make the probabilistic scaling 360 

framework described above more accurate, as different types of emission events likely have different 361 

distributional characteristics. It will also allow for a more detailed root cause analysis of the differences 362 
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observed across basins in Figure 5. Future work will also use a localization algorithm in conjunction with 363 

operator insight to estimate sources for each emission event. 364 

Discussion 365 

Our multi-scale field measurements described here find the following:  366 

(1) Methane emissions in all three basins exhibit significant intraday and daily variation, resulting in a 367 

range of three orders of magnitude in snapshot measurements both at the site-level and at the 368 

equipment-level, 369 

(2) GHGRP-based inventories, on average, underestimate methane emissions at the basin- and national-370 

level. However, individual sites can have significantly lower emissions than inventory estimates, and 371 

(3) Characterizing operator-specific distributions of the frequency and duration of intermittent emissions 372 

events is critical to developing an accurate annualized emissions estimate. 373 

Accurate estimates of average emissions at the basin-level are insufficient for developing target-based 374 

policies such as methane fees, methane border adjustment or low leakage certification frameworks. 375 

Individual transactions involving natural gas, even at high volumes, can be sourced from a small number 376 

of high-producing assets, and there can be significant design, operational and maintenance variation that 377 

impacts emissions even within a basin or sub-basin [14], [44]–[46]. In this context, multi-scale 378 

measurements of methane emissions have demonstrated the need for a robust approach to improve 379 

emissions inventories. 380 

Based on results of this study, we recommend the following four guidelines for measurement protocols to 381 

accurately estimate methane emissions and inform mitigation strategies.  382 

1. Snapshot measurements are needed to quantify all methane sources at the equipment- or site-level 383 

to help reconcile measurements with inventory estimates. While site-level estimates are sufficient 384 

for providing a measurement-based inventory, equipment-level data can help reconcile 385 

measurements with inventory estimates and provide data to develop mitigation strategies. 386 

2. Measurements to develop distributions of the frequency and duration of intermittent emissions 387 

events are key to annualize any snapshot measurement. Because events can last less than 24 hours, 388 

high sampling rate technologies like CEMS will likely be needed to develop these distributions. 389 

Though CEMS do not yet provide accurate quantification data, their use as event detectors informs 390 

near real-time mitigation strategies. 391 

3. Detailed record-keeping of one-time events, maintenance activities, and upset conditions will help 392 

to reconcile measurements with engineering-based inventory estimates and to correlate emissions 393 

with specific work-practices enabling development of appropriate mitigation options.  394 

4. Independent verification of measurements and quantified emissions, along with operational data, 395 

using transparent, peer-reviewed approaches can enable trust-building with the broader public. This 396 

verification must go beyond satisfying a checklist of operator actions but involve academic experts 397 

who can provide an independent evaluation of all relevant data.  398 

Several studies have demonstrated that official inventories underestimate average methane emissions [20], 399 

[21]. Yet, such inventories are often a major component of any operator or government’s climate action 400 

plans. These inventories form the official basis for domestic regulations as well as submissions to 401 

international collaborations such as the UNFCCC process. Given that, it is important to leverage 402 



Non-peer reviewed preprint submitted to EarthArXiv 
 

measurements to reconcile and bridge the gap between measurement-based and engineering-based 403 

inventory estimates. While site-specific measurements represent an improvement over existing 404 

conventional inventory methods like the GHGRP, snapshot measurements have their own limitations 405 

associated with temporal variability in emissions. A major open question in methane science is the 406 

distribution and frequency of intermittent emission events. While large sample sizes could make up for 407 

temporal variation in developing basin-level emissions estimates, such an approach is inadequate for 408 

developing target-based approaches to mitigation policies. Multi-scale measurements at each facility that 409 

provide quantitative information on emissions volume and frequency and duration of intermittent events is 410 

necessary to identify and update equipment-level or facility-level emissions factors in national inventories. 411 

This targeted approach where data from the field is used to continuously update inventory assumptions will 412 

help bridge the gap between measurements and inventory estimates over time. Furthermore, such detailed 413 

information on intermittent events can also be used to updated process-based models such as the Methane 414 

Emissions Estimation Tool (MEET) to better align with observations [47], [48].  As technology – especially 415 

CEMS flux algorithms and emissions localization capability – improves, it would be possible to provide 416 

real-time estimates of site-level methane emissions that can be used in lieu of engineering-based inventory 417 

estimates for each site. 418 

The key to building trust for regulators, investors, and the public in a framework for monitoring methane 419 

emissions is through independent, third-party verification. The goal of this verification should encompass 420 

both evaluating the validity of direct measurements as well as to provide robust uncertainty bounds on 421 

emissions based on operational and maintenance records, emissions and activity data, and an inventory 422 

estimate that has been reconciled with measurements. The role of an independent third-party is not only 423 

important to provide impartiality, but also the necessary expertise to understand both methane emissions 424 

and data analytics. There are several ways to perform verification. One approach would be to undertake 425 

multiple snapshot verification measurements, across relevant temporal and spatial scales at a representative 426 

group of facilities and compare verification measurements with that of reported emissions estimates [49]. 427 

Statistical models can then be used to evaluate if the posterior likelihood of the verification measurement 428 

data is consistent, or not, with the reported inventory estimates. Another approach would be to use data 429 

from CEMS installed at sites to independently estimate emissions through publicly available modeling 430 

tools. Measurement approaches should be based on basin-specific characteristics of methane emissions but 431 

the key to effective mitigation is the ability to independently verify emissions estimates.  432 

This work has demonstrated the need for multi-scale measurements, including snapshot measurements and 433 

high frequency CEMS to accurately estimate methane emissions. In addition to improving methane 434 

emissions estimates, many measurement technologies can identify and reduce methane emissions in the 435 

near-term, identifying leaks at the equipment-level and acting as event detectors, that will provide 436 

operational as well as climate benefits. While we recognize the challenges of going from zero to multi-scale 437 

measurements, operators should consider developing monitoring plans that ramp up over a reasonable 438 

period. Technology developments of the past few years have made developing quasi real-time estimates of 439 

supply chain methane emissions using networked sensor data in a transparent and trusted manner 440 

increasingly likely.  441 
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S.1 Elements of a QMRV protocol  642 
The elements of the quantification, monitoring, reporting, and verification (QMRV) protocol developed as 643 
part of this study are outlined in this section. Operators were expected to use this protocol as a guideline to 644 
develop site-specific QMRV plans. The protocol is designed to be flexible so operators could choose a 645 
technology for methane measurements that best suited the activity and emissions profile of their sites. There 646 
are four main elements to the QMRV protocol. 647 

1. Development of a QMRV plan  648 
2. Emissions inventory estimation and reporting  649 
3. Multi-scale emissions monitoring  650 
4. Independent verification  651 

The four elements are summarized in Figure S1 and further described below.  652 

 653 

Figure S1. Four major elements of the QMRV plan include (1) preparation of the QMRV plan by the 654 
operator, (2) initial inventory and emissions intensity estimation, (3) monitoring that includes periodic 655 
surveys (phase-1) and the use of continuous emissions monitoring system (CEMS, phase-2), and (4) 656 
verification.  657 

Element 1- Development of a QMRV plan: 658 
The intent of the QMRV plan is to provide operators with the agency to make choices about emissions 659 
monitoring, reporting, and verification on their sites, within the guidelines established through this protocol. 660 
As part of the QMRV plan, the operator is expected to identify the list of sites along with activity data that 661 
are enrolled in the program, specify emissions estimation and reporting methods, including any 662 
supplementary emissions data that are typically not included in conventional inventories such as the EPA 663 
greenhouse gas reporting program (GHGRP) or those specified by other regulatory agencies such as the 664 
Environment and Climate Change Canada. In addition, the operator specifies the technologies that will be 665 
used in the monitoring element of the protocol, mitigation methods and work practice standards employed. 666 
The total number of sites enrolled in a QMRV program is based on a fixed total production volume. If the 667 
enrolled assets are only a fraction of the total assets owned and/or operated by the operator, they should 668 
include a list of non-enrolled sites in the basin that are not part of the QMRV plan. This is necessary to 669 
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survey non-enrolled assets using top-down measurement approaches to ensure representativeness of the 670 
enrolled assets in the QMRV program.  671 

Element 2- Emission Inventory Estimation and Reporting:  672 
For each enrolled site, the operator is expected to calculate and report the operator estimated inventory 673 
which includes GHG emissions, GHG emissions intensity and methane emissions intensity by employing 674 
methods identified in section S3. These estimates should be based on empirical activity data from the 675 
enrolled sites and EPA-specified emissions factors. In addition, the operator should also include 676 
supplementary emissions information that account for known deficiencies in the GHGRP such as methane 677 
slip from exhaust using AP-42 emissions factors. Finally, other known sources of emissions that are not 678 
included in the GHGRP can also be included (see section S3). These include small combustion sources that 679 
do not need to be reported, methane emitted for operational activities such as truck-loading, emissions from 680 
operational issues such as improperly open thief hatches, improved emissions tracking of blow-through 681 
from dump valves, flare and combustor downtimes and inefficiencies, small blowdowns, or compressor 682 
starts. The operator must include all emissions from handling of the gas stream, from the enrolled assets at 683 
production sites through to central handling facilities, even if the central handling facilities are downstream 684 
and away from the well site. As central handling facilities may also handle production from other well sites 685 
that are not included in the QMRV program, the operator will only include a portion of the total emissions 686 
from these central handling facilities. The fraction of the central handling facility emissions will be in 687 
proportion to the gas volumes received from the wells enrolled in the QMRV program. In all cases, the 688 
methodology to develop the composite inventory (GHGRP + supplemental inventory, see section S3) 689 
should be specified in the QMRV plan and must be maintained throughout the duration of the QMRV 690 
program. 691 

Element 3 – Multi-scale emissions monitoring:  692 
Operators will undertake up to two phases of emission measurement and monitoring on all enrolled sites. 693 
Phase-1 consists of periodic leak detection and repair (LDAR) surveys using survey-type technologies at 694 
a minimum monthly survey frequency. Phase 2 consists of enhanced monitoring using continuous or 695 
near-continuous emissions monitoring systems (CEMS) to detect intermittent, high-volume, emission 696 
events and to initiate mitigation actions faster than a periodic survey would allow.  697 

Phase-1 monitoring consists of monthly LDAR survey using OGI-based infrared cameras or snapshot 698 
approaches such as aerial or drone-based measurements. Any LDAR survey is required to measure all 699 
emissions at the facility, not just fugitive emissions or leaks in order to enable comparisons to top-down 700 
measurements. These include sources such as storage tanks, compressors, inefficient flares, and pneumatic 701 
controllers. Alternative monitoring programs can be proposed by the operator for Phase-1 if they can 702 
demonstrate mitigation equivalence with monthly LDAR surveys using models such as FEAST [1]. The 703 
operator is expected to maintain detailed records of these surveys including emission events, repairs 704 
undertaken, and potential causes for repair delays. In addition, operators are required to conduct weekly 705 
surveys using audio, visual, olfactory (AVO) detection, EPA method-21, or other appropriate technology 706 
to catch episodic emissions that might occur between the monthly surveys. Phase-1 monitoring should also 707 
focus on detecting abnormal methane and CO2 emissions from the sources at the site. If abnormal emissions 708 
are detected during a LDAR survey – regular or informal – the operator must investigate, repair (or 709 
otherwise address) any problems, record the survey results and any actions taken, and either measure or 710 
estimate total emissions released based on an estimated duration of the emissions. 711 

Phase-2 enhanced monitoring consists of deploying an appropriate CEMS across all enrolled sites. The goal 712 
of the Phase-2 monitoring is to capture intermittent and short-duration emission events that can occur 713 
between surveys. Recent studies have demonstrated that intermittent emissions contribute significantly to 714 
total basin-level emissions [2]. Without a near-CEMS approach to identifying the frequency and duration 715 
of such events, snapshot measurements are unlikely to provide an accurate annualized emissions estimate. 716 
Furthermore, the distributions of the frequency and duration of intermittent events for each operator and 717 
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basin can be used to appropriately scale snapshot measurements to estimate annualized emissions. Finally, 718 
CEMS data provides real-time verification that high volume emission events are not missed because of 719 
gaps in periodic monitoring, allowing third-party verifiers to independently assess emissions estimates. 720 
While commercially available CEMS do not yet accurately quantify emissions, they can function as a 721 
‘smoke alarm’ to quickly detect and localize high volume emission events. Improvements in CEMS 722 
technology in the future could be used to develop real-time estimates of emissions across the natural gas 723 
supply chain. Because CEMS technologies are relatively new, operators are requested to evaluate the cost 724 
and logistical ease of using these sensors to inform future deployment. 725 

A key aspect of the QMRV plan is that data collected through this multi-scale monitoring approach be made 726 
available to the third-party verifier and independent assessor for review as part of the verification process 727 
monthly.  728 

Element 4 – Verification: 729 
Independent verification is key to building trust in any QMRV program and includes steps taken by the 730 
QMRV program administration, operator, third-party verifier, and independent assessor. Here, verification 731 
consists of several steps:  732 

a. Independent baseline emissions measurement conducted by the program administrator at all enrolled 733 
sites employing both top-down and bottom-up approaches such as aerial- and drone-based surveys, 734 
OGI surveys, and satellite observations. These measurements must be completed before the start of the 735 
monitoring phase. If the number of enrolled sites is small compared to the asset portfolio of the operator, 736 
the baseline top-down measurements should include emissions quantification at non-enrolled sites to 737 
ensure representativeness of sites participating in the QMRV program. The data will be made available 738 
to the operator, third-party verifier, and independent assessor.  739 

The key goals of the baseline measurement phase are as follows:  740 
• Compare the operator estimated inventory with measurement informed inventory  741 
• Characterize site emissions, including the frequency of potential super-emitters  742 
• Correlate the normal and super-emitter emissions with site operations and maintenance 743 

records. 744 
• Inform planning for the rest of the QMRV program, including identification of major sources 745 

of emissions, to guide the enhanced monitoring phase.  746 
 747 

b. Final end-of-project top-down emissions measurements conducted by the program administrator 748 
using the same technologies as the baseline. The data will be made available to the operator, third-749 
party verifier, and independent assessor.  750 
 751 

c. A final report by the operator attesting that all measurements and analysis have been conducted in 752 
compliance with the QMRV plan. This includes a reconciliation analysis conducted by the operator 753 
when the end-of-project measurements are different than the measurement informed inventory 754 
estimates by over 50%. This threshold is based on an analysis of typical uncertainties associated 755 
with current top-down measurement technologies. This report by the operator will be made 756 
available to the third-party verifier and the independent assessor.  757 
 758 

d. A ‘verification report’ prepared by a third-party verifier to assess the validity of baseline and 759 
verification emissions measurements and analysis, the final report prepared by the operator, and 760 
whether the goals of the QMRV program have been achieved. This verification report will confirm 761 
to the QMRV program administrator whether the operator has satisfied the requirements of the 762 
program and that the final operator report does not contain data or analysis errors. The third-party 763 
verifier can choose to re-analyze all data collected throughout the program if necessary.  764 
 765 
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e. Finally, the independent assessor will develop an ‘Independent assessment report’ to synthesize 766 
findings from all measurements conducted at enrolled sites, assess monitoring technologies, and 767 
provide recommendations for improvements to the QMRV program and scale up across operator’s 768 
portfolio of assets. The independent assessor may also analyze public data on the enrolled sites 769 
(e.g., satellite or other measurements) to compare emissions measured through the QMRV 770 
program. The role of the independent assessor, as the name implies, is to independently assess the 771 
‘verification report’ through data collected as part of the QMRV program as well as any other 772 
available data. As such, the independent assessor must have domain knowledge of O&G operations 773 
and be an expert in methane data analysis. 774 

S.2 Measurement technologies 775 

S.2.1 OGI camera 776 
The bottom-up survey used optical gas-imaging (OGI) camera paired with Hi-Flow Sampler to detect and 777 
quantify emissions. The OGI camera is a common technology used by operators to conduct LDAR surveys 778 
because it can localize emissions for future repairs. There are several factors that impact the detection rate 779 
of OGI camera, including imaging distance, plume temperature, atmospheric temperature, background, 780 
humidity, gas compositions etc. [3] Moreover, recent study by Zimmerle et al. found that the experience of 781 
the measuring technician also plays a significant role in emissions detection rate [4]. It is worth noting that 782 
OGI cameras has difficulties detecting methane slips due to the high temperatures of vapors [5]. 783 

The bottom-up survey included 1-2 measurements of each site and quantified both leak and vent emissions 784 
at the component-level. Detected emissions are quantified with Hi-Flow Sampler, where possible. When 785 
Hi-Flow Sampler cannot access the emission source, the field crew quantified emissions using visual 786 
estimates. Besides emission rates, the field crew collected data on emissions type (leak vs vent), process 787 
block, field equipment designation, component, operating mode, gas type, and additional description on 788 
emissions. Data are reported in Excel spreadsheets.  789 

S.2.2 Bridger Photonics 790 

Bridger Photonics used advanced light detection and ranging (LiDAR) technology, a downward looking 791 
plume identification system, to map out methane emissions. By mounting it on a helicopter or small plane, 792 
the system can scan dozens of sites daily, revisit sites with detection in the same day for persistence checks 793 
and provide indications of detected emissions. Bridger’s technology does not require any observer or 794 
operator to be present at the site. However, quantification of detected emissions requires a week or more to 795 
produce, and the accuracy of the estimates depend on accuracy of wind data. Johnson et al. tested the 796 
uncertainty range of Bridger’s technology to be +/- 31 to 68%, depending on the availability of accurate 797 
wind data [6].  798 

Bridger conducted 2-3 rounds of measurement of a site every day to collect emissions data. During each 799 
round of measurement, Bridger flew over the site 2-3 times within a couple of minutes. Emissions locations 800 
are marked by Emissions Location numbers indicating the location of emissions on site. Individual plumes 801 
are recorded by “Detection ID”. Bridger also recorded data on scan date and time, max concentration (ppm-802 
m), wind speed (mph), persistence rate, latitude, and longitude. Data is reported at flight-level in Excel 803 
spreadsheet and in .kmz files and reported at site-level in PDF report with site photos.  804 

S.2.3 SeekOps 805 

SeekOps used a SeekIR methane sensor mounted on a drone and a ground meteorological station to inspect 806 
and quantify emissions on site. A drone pilot flies the drone downwind of site equipment to scan for 807 
methane emissions. The uncertainty range on emissions estimates is ± 30% [7] and the results take 808 
approximately a week to produce. SeekOps’ technology requires site access to measure emissions.  809 

SeekOps conducted 1-2 measurements of each site in total. Emissions are reported in PDF format by 810 
equipment group as marked on site photos. Additionally, the emissions report contains a wind rose, 811 
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background levels, and site notes from the field crew. The site notes include emissions details, wind changes 812 
during measurement, on-site activities, etc.  813 

S.3 Inventory data 814 
Operators are required to develop an emissions inventory prior to the start of the program, and monthly 815 
thereafter through the phase-1 and phase-2 monitoring periods. To standardize inventory reporting, 816 
operators are required to use the Environmental Protection Agency’s Greenhouse Gas Reporting Program 817 
(GHGRP) template and supplement it with sources that are known to be excluded in the GHGRP [8]. 818 

GHGRP sources include the following: pneumatic devices, pneumatic pumps, dehydrator vents, well 819 
venting for liquids unloading, onshore production petroleum and natural gas gathering and boosting storage 820 
tanks, flare stack emissions, reciprocating compressor venting, equipment leak surveys, and supply chain 821 
combustion emissions. A detailed list of GHGRP sources, methodology reference, and any associated 822 
changes to the GHGRP methodology is shown in Table 1.  823 

Supplemental sources of emissions that are not part of the conventional GHGRP reporting must be 824 
separately accounted for in the inventory estimation process. Sources include methane slip in compressor 825 
engines, vessel blowdowns, compressor blowdowns, compressor starts, pressure release valve (PRV) 826 
venting, produced water tank emissions, combustion emissions from small sources, and any observed 827 
emissions as part of the phase-1 and phase-2 monitoring. A detailed list of supplemental sources and 828 
associated emissions factors are shown in Table 2. 829 

S.3.1 GHGRP Sources 830 

Table 1: List of source categories in the GHGRP used for inventory calculation for the enrolled sites in 831 
the QMRV program, along with any modifications to methodology necessary 832 

Source Categories GHGRP Methodology 

Reference 

Changes to GHGRP methodology 

Pneumatic devices 40 CFR Part 98.233(a) • “Countt” limited to enrolled sites  

• “GHGi” limited average concentration of 

methane or CO2 in enrolled sites  

• “Tt” limited to operating hours for the duration 

of the QMRV program 

Pneumatic pumps 40 CFR Part 98.233(c) • “Countt” limited to enrolled sites  

• “GHGi” limited average concentration of 

methane or CO2 in enrolled sites  

• “T” limited to operating hours for the duration 

of the QMRV program 

Dehydrator vents 40 CFR Part 98.233(e) • For calculation methodology 1, “hours 

operated” limited to operating hours for 

duration of the QMRV program 

Well venting for liquids 

unloading 

40 CFR Part 98.233(f) • “W” limited to enrolled sites  

• “Vp” limited to liquid unloading events for the 

duration of the QMRV program 

Gathering and boosting 

storage tanks 

40 CFR Part 98.233(j) • For calculation methods 1 and 2, 

o “Es,i,o” limited to enrolled sites 

o “En” limited to flare stack emissions from 

enrolled sites 
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o “Tn” limited to the operating hours for 

duration of the QMRV program 

• For calculation method 3,  

o “Es,i” limited to enrolled sites 

o  “Count” limited to enrolled sites 

Flare stack emissions 40 CFR Part 98.233(n) • “Es” limited to enrolled sites 

Reciprocating 

compressor venting 

40 CFR Part 98.233(p) • “Count” limited to enrolled sites 

• “EFi,s” limited to the average concentration of 

methane or CO2 in enrolled sites 

Equipment leak 

surveys1 

40 CFR Part 98.233(q) • “GHGi” limited average concentration of 

methane or CO2 in enrolled sites  

• “Xp” limited to enrolled sites 

• “Tp,z” limited to operating hours for the 

duration of the QMRV program 

Combustion emissions 

(production, gathering 

and boosting, 

distribution) 

40 CFR Part 98.233(z) • For Tier-2 calculation methodology in 40 CFR 

Part 98.33(a) and 98.33(c)(2): 

o “CO2” limited to enrolled sites 

o “CH4” limited to enrolled sites 

o “N2O” limited to enrolled sites 

o “Fuel” limited to the operating hours for 

duration of the QMRV program 
1In some cases, leaker factors may be generated from supplemental sources to replace factors from Table 833 
W-1E of subpart W.  834 

S3.2. Supplemental Sources 835 

1. Methane slip in compressor engines  836 

GHG emissions from reciprocating compressor engines can be estimated using the appropriate methane 837 
emissions factor from the AP 42 emissions factors [9]. The emissions factors in Table 2 will be 838 
substituted in place of the methane emissions factor from Table C-2 of Subpart C in the GHGRP. 839 

Table 2: Supplemental emissions factors for methane slip in compressor engines. 840 

Engine Type Pollutant 

Emission Factor 

(lb/MMBtu) 

(fuel input) 

Emission Factor 

(kg/MMBtu) 

(fuel input) 

Uncontrolled emission factors for 

2-stroke lean-burn engines 

Methane 1.45E+00 6.58E-01 

Uncontrolled emission factors for 

4-stroke lean-burn engines 

Methane 1.25E+00 5.67E-01 

Uncontrolled emission factors for 

4-stroke rich-burn engines 

Methane 2.30E-01 1.04E-01 

 841 

 842 

2. Vessel blowdowns, compressor blowdowns, compressor start, and pressure release valves 843 
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GHG emissions for these supplementary source categories can be estimated using the ONE Future 844 
methane intensity protocol methodology and the appropriate GHGI emission factor as shown in Table 3 845 
[10]. The emissions factors must be multiplied by the activity data (count of vessels, count of 846 
compressors, count of PRVs) to estimate total emissions.   847 

Table 3. Supplemental emissions factors based on the ONE Future methane intensity protocol 848 
methodology 849 

Activity Units Average CH4 EF  

(2019, Table 3.6-2) 

Average CO2 EF 

(2019, Table 3.6-12) 

Vessel blowdowns kg/vessel 1.6 0.2 

Compressor 

blowdowns 

kg/compressor 76.9 8.5 

Compressor start kg/compressor 172.1 19.1 

Pressure release valve kg/PRV 0.7 0.1 

 850 

3. Produced water tank emissions 851 

Greenhouse gas emissions from produced water tanks that are not controlled by a flare or combustor are 852 
generally not reported under the GHGRP. Emissions from produced water storage tank flashing, working, 853 
breathing, and loading will be estimated as a supplemental source for the QMRV program. These can be 854 
estimated using ProMax simulation software which incorporates estimation equations from the EPA’s 855 
AP-42 chapter 7 on liquid storage tanks [9, p. 42]. 856 

 857 
4. Flares, glycol dehydrators 858 

Emissions from flares and glycol dehydrators can be estimated directly using methods specified by the oil 859 
and gas methane partnership (OGMP) 2.0 or the EPA GHGRP [11], [12]. All assumptions, inputs, and 860 
software tools used in this estimation must be documented.  861 

5. Combustion emissions from small sources 862 

GHG emissions from external combustion sources with a heat rating less than 5 MMBtu per hour and 863 
internal combustion sources with a heat rating of less than 1 MMBtu per hour are exempt from emissions 864 
calculations under the GHGRP. For the purposes of the QMRV program, GHG emissions from these 865 
small combustion sources will be estimated using the same calculation methodologies in 98.233(z) of the 866 
GHGRP. 867 

6. Observed emissions 868 

Observed emissions during the monitoring phase (phase 1 and phase 2) of the QMRV program can be 869 
estimated based on one or more of the following methods. The operator will select the most appropriate 870 
method for emissions estimation and document which method is used. 871 

• Emission rates for similar components or equipment as measured during the baseline emissions 872 
survey at enrolled sites 873 

• Emissions rates estimated by continuous monitoring technology (Phase 2 only) 874 
• Employ emission factors based on Table 4 for sources not well represented in the GHGRP 875 

 876 
Table 4. Leaker emissions factors for observed emission sources not well represented in the GHGRP. All 877 
emissions factors are based on values in Zimmerle et al. [13].  878 
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 879 
Source Emissions Factor (scfh) 

Tank vent (common multi-unit) 109.0 

Tank vent (common single-unit) 43.7 

Thief hatch 25.9 

Rod packing vent (operating) 24.9 

Rod packing vent (not operating, pressurized) 20.1 

Rod packing vent (not operating, depressurized) 9.3 

S.4 Measurement Methodology 880 

S.4.1 Snapshot measurement data  881 
Bridger’s data is analyzed at the emitter (Emissions Location) level. First, based on the scan date and time 882 
in the Excel spreadsheet and the .kmz file, we grouped each overflight into rounds of measurements 883 
undertaken by Bridger. Next, we calculate the average emissions rate for each Emissions Location in that 884 
round of measurements. Finally, Emissions Location from the same round of measurements were added 885 
together to represent site-level emissions rate for that round of measurement. Bridger conducted 2-3 rounds 886 
of measurements each day.  887 

SeekOps measured emissions at equipment group level. Site-level emissions was calculated by summing 888 
equipment group level emissions. SeekOps conducted 1-2 measurements of each site during the study. The 889 
equipment identification provided by SeekOps’ report provided a good reference for emissions attribution. 890 
By comparing Bridger’s site photos against SeekOps’, we were able to identify emitting equipment 891 
measured by Bridger.  892 

Each measurement from Bridger and SeekOps was considered an independent estimate of emissions that 893 
best represented each site’s emissions at the time of measurement. Due to the fluctuations in equipment 894 
emissions, there was no certain time that best represents the sites’ emissions. As a result, every measurement 895 
was considered equally valid, and the average of all rounds of measurement from Bridger and SeekOps was 896 
taken as the best representation of site-level emissions. Basin-level emissions are calculated as the average 897 
of site-level emissions in the basin.  898 

We did not independent conduct any tests of technology performance because prior peer-reviewed studies 899 
demonstrate the fundamental characteristics of Bridger and SeekOps systems [6], [14]. The uncertainties 900 
used in the analysis are based on these peer-reviewed studies. However, we note that the uncertainties 901 
presented in this analysis are conservative estimates and do not account for higher sample sizes in our study 902 
that will reduce aggregate uncertainty [15].  903 

S.4.2 OGI baseline measurement data 904 

Equipment- and site-level emissions were calculated by summing component-level emissions. OGI survey 905 
conducted 1-2 measurements of each site during the study. The limitation of OGI camera paired with Hi-906 
Flow Sampler is discussed in Section S.2.1. Equipment- and site-level emissions for each basin is listed 907 
below. In Table 5, we show equipment-level emissions comparison for major equipment groups as 908 
measured by OGI, SeekOps, and Bridger for Basin A and Basin B. Equipment-level comparison is 909 
unavailable for Basin C due to operator restrictions. Average equipment-level emissions are calculated as 910 
the average of all rounds of measurement taken by each technology.  911 

Table 5: Equipment-level emissions comparison 912 

Basin Equipment OGI (SCFH) Bridger (SCFH) SeekOps (SCFH) 

Basin A Tanks 104 657 271 

Basin A Wellheads 6 139 89 
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Basin A GPU/Separator 19 157 38 

Basin B Tanks 95 228 311 

Basin B Wellheads 8 26 25 

Basin B GPU/Separator 91 148 201 

 913 

In Table 6, we show site-level emissions comparison as measured by OGI, SeekOps, and Bridger for basin 914 
A, basin B, and basin C. Average site-level emissions is calculated as the average of all rounds of 915 
measurement taken for each site by each technology. Bridger did not measure 2 enrolled sites in basin C 916 
due to wrong coordinates. Consequently, the site-level emissions comparison of basin C excludes these 2 917 
enrolled sites.  918 

Table 6: Site-level emissions comparison 919 

Basin OGI (scfh) Bridger (scfh) SeekOps (scfh) 

Basin A 131 1153 696 

Basin B 199 448 638 

Basin C 51 432 184 

 920 

At the equipment-level, Bridger and SeekOps technologies measure up to an order of magnitude more 921 
emissions than the OGI +Hi-Flow measurement. While the OGI survey also notes that tanks as a major 922 
contributor to emissions, measured tank emissions by the Hi-Flow instrument are significantly lower than 923 
that by Bridger and SeekOps. At the site-level, OGI+Hi-Flow system constantly measured less emissions 924 
than Bridger and SeekOps. Due to the limitations of OGI camera discussed in section S.2.1, measurements 925 
from OGI are not included in the calculation of measured emissions. 926 

S.4.3 Continuous emissions monitoring systems (CEMS) 927 
Continuous emissions monitoring systems (CEMS) were deployed on several assets enrolled in the QMRV 928 
program. These sensors record ambient methane concentrations at their location, which is typically at the 929 
fence line or next to equipment with high potential for methane emissions. Using these concentration 930 
measurements to estimate emission source locations and rates is a complicated problem, and while some 931 
CEMS vendors have preliminary tools for doing so, these location and rate estimates were not made fully 932 
available due to their experimental nature. Therefore, we only consider concentration data in this paper. 933 

In section 3.4 of the main text, we propose a framework for better understanding the distribution of emission 934 
event durations and wait times using CEMS concentration data. These distributions provide insight into 935 
emission characteristics at the basin-level and can be used to scale snapshot top-down measurements that 936 
happen to capture an episodic event (e.g., liquids unloading or blowdown events) to make a direct 937 
comparison to an annualized inventory. This framework depends on an algorithm that translates 938 
concentration data into a list of emission events and their corresponding start times and durations.  939 

At a high level, the algorithm flags spikes in a methane concentration time series that we believe to be the 940 
result of activity on the site and returns their start time and duration. The algorithm operates on univariate 941 
time series only. In section 3.4 of the main text, we apply it to the maximum methane concentration across 942 
sensors deployed on a single site on a minute-by-minute basis. This simplifies the problem, as it collapses 943 
the data from each sensor into one signal that preserves the spikes that we wish to analyze. Because we are 944 
interested in spikes that are the result of site activity, we do not target gradual changes in methane 945 
concentration (i.e., shallow bumps), but rather sharp increases (i.e., spikes), as we have found that methane 946 
emissions typically result in rapid increases in ambient concentrations above baseline. 947 

The type of events that are flagged by the algorithm depend largely on three parameters: 948 
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1. The going up threshold is used to flag rapid increases in methane concentration and trigger the 949 
start of an event. The default value is 0.25ppm. Note that this parameter is scale dependent. 950 

2. The return threshold is used to determine when an event has ended. The default is 10% of the 951 
maximum event concentration. Note that this parameter is scale independent. 952 

3. The amplitude threshold is used to filter out events that are too small after considering background 953 
concentrations. Note that this parameter is scale dependent. 954 

The algorithm proceeds as follows. First, input a univariate time series (i.e., the methane concentration data) 955 
and take the first order difference. Flag positive differences greater than the going up threshold. These 956 
time steps are recorded and will be used later to indicate the start of an event. Call these points the event 957 
start times. Next, initialize a Boolean event flag to FALSE, and then loop through each time step in the 958 
time series. At each time step, do the following: 959 

• If not already in an event (i.e., event flag is FALSE) and: 960 
o If this time step is an event start time, enter an event (i.e., set event flag to TRUE). The 961 

time series will remain in the event until the event exit conditions are met. 962 
o If this time step is not an event start time, do nothing. 963 

• If already in an event (i.e., event flag is TRUE) and: 964 
o If the methane concentration at this time step has returned to return threshold percent of 965 

the maximum concentration recorded during this event, exit the event (i.e., set event flag 966 
to FALSE). 967 

o If the methane concentration at this time step has not returned to return threshold percent 968 
of the maximum concentration recorded during this event, remain in the event. 969 

This methodology provides a mask that covers the duration of each event in the time series. Note that the 970 
return threshold is defined as a percent of maximum concentration rather than a negative difference 971 
because we have found that while events almost always start with a rapid increase in concentrations, they 972 
sometimes dissipate at a slower rate. By using this methodology, we impose the following definition of an 973 
event: time steps following (and including) the event start times up until the methane concentration has 974 
returned to return threshold percent of the maximum concentration recorded during that event. Looping 975 
once through the time series in this manner results in a list of flagged events. Next, loop through these 976 
events. For each event, do the following: 977 

• Fit a LOESS curve to the methane concentration data that have not been flagged as an event in a 978 
local region surrounding the event. By default, the algorithm uses 120 observations on each side of 979 
the event. 980 

• Using the LOESS fit, predict methane concentrations at the time steps that were flagged as the 981 
event. This gives an estimate of the local background methane concentrations. 982 

• The amplitude of this event is computed as the maximum methane concentration of the event minus 983 
the corresponding background estimate from the LOESS fit. 984 

• Discard the event if the event amplitude is less than the amplitude threshold. 985 
 986 
This step allows us to filter events by their background-corrected (or background removed) amplitude. The 987 
output of this algorithm is a list of events along with their start times and durations. The start time is simply 988 
the first time step of the event. The event duration is the difference between the last time step and the first 989 
time step. These fields allow us to compute the time between events as the difference between the start time 990 
of one event and the last time step of the preceding event. 991 
 992 
Note that while this algorithm depends on several hand tuned parameters, these parameters are designed to 993 
balance each other out. Specifically, the going up threshold is by default set to a small value to catch spikes 994 
that build up slowly. The amplitude threshold can then be set to a large value to throw out any spikes that 995 
did not end up being large enough to be deemed significant. This ensures that no spikes are missed and that 996 
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only large or significant events are returned. Additionally, we check for events that contain four differences 997 
in a row below 0.4ppm, indicating that the event has returned to baseline without triggering the return 998 
threshold. In these rare cases, we discard the event. 999 
 1000 
We use an amplitude threshold of 20ppm in section 3.4 of` the main text. To provide intuition on the type 1001 
of events that are flagged with this threshold, we plot the minute-by-minute maximum methane 1002 
concentration across sensors on a single site enrolled in the QMRV program in Figures S2-S7. The data 1003 
ranges from October 2021 to March 2022, and we plot each month in a separate figure. Colored lines 1004 
indicate a flagged event, with different colors corresponding to different events (the colors have no other 1005 
meaning). 1006 

 1007 
Figure S2. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 1008 

program for October 2021. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 1009 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  1010 
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 1011 
Figure S3. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 1012 

program for November 2021. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 1013 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  1014 

 1015 

 1016 
Figure S4. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 1017 

program for December 2021. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 1018 

by the spike detection algorithm are highlighted in color, with different colors indicating different events. 1019 
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 1020 
Figure S5. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 1021 

program for January 2022. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 1022 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  1023 

 1024 
Figure S6. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 1025 

program for February 2022. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 1026 

by the spike detection algorithm are highlighted in color, with different colors indicating different events. 1027 
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 1028 
Figure S7. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 1029 

program for March 2022. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 1030 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  1031 

There are rare instances in which the spike detection algorithm does not detect a notable spike (e.g., October 1032 
1, 2021, and February 28, 2022). In future work we will improve the logic used in this algorithm to eliminate 1033 
these errors. 1034 
Finally, we test a range of amplitude thresholds (10, 15, 20, 25, and 30ppm) to ensure that the conclusions 1035 
we present in the main text are not threshold dependent. We find consistent results across thresholds. 1036 
Specifically, for all tested thresholds: 1037 

• A large portion of the events in both basins last less than 2 hours. 1038 
• Events in Basin A tend to last longer than events in Basin B (indicated by a heavier tail in subfigures 1039 

(a) compared to subfigures (c)). 1040 
• Events in Basin A tend to occur more frequently than events in Basin B (indicated by a lower 1041 

median in subfigures (b) compared to subfigures (d)). This is true for the smallest amplitude 1042 
threshold but is more apparent in the larger thresholds. 1043 

 1044 
For transparency, we show the event duration and wait time histograms for each threshold tested in 1045 
Figures S8-S12.  1046 

 1047 
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1048 
Figure S8. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 1049 
subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 1050 
purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 1051 
threshold of 10 ppm. 1052 

 1053 

Figure S9. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 1054 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 1055 

purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 1056 

threshold of 15 ppm. 1057 
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 1058 

Figure S10. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 1059 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 1060 

purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 1061 

threshold of 20 ppm. 1062 

 1063 

Figure S11. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 1064 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 1065 
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purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 1066 

threshold of 25 ppm. 1067 

 1068 

Figure S12. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 1069 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 1070 

purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 1071 

threshold of 30 ppm. 1072 
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