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Three important principles

1. Statistical learning methods are useful in a wide range of disciplines
2. Statistical learning should not be viewed as a black box

3. While it is important to understand the strengths, weaknesses, and assumptions of

each statistical learning method, it is not necessary to build them from scratch
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Great reference text

Gareth James
* Free pdf at: https://www.statlearning.com/ Daniela Witten
Trevor Hastie

Robert Tibshirani

 Most of the images in this talk taken from ISLR

An Introduction
to Statistical

Learning

Second Edition
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https://www.statlearning.com/

Agenda

e |Introduction: what is statistical learning?

 [Two common problems statistical learning can address
- Regression techniques and their interpretation

- Classification techniques and their interpretation
« How to evaluate a statistical learning model?

o Stat learning example: What are the drivers of fire season intensity in MSEA?

R implementation
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What is statistical learning?
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What is statistical learning?

 Methods to estimate the relationship between variables (i.e., data)
* Given:
- some response variable, Y

- p different predictor variables, X = (X, X,, . .. ,Xp)

» We assume a general relationship: Y = f(X) + ¢
- fis some fixed but unknown function

- € is a random error term (usually mean zero)

o Statistical learning attempt to estimate the true relationship, f, with some approximation, f

Example is linear regression: ¥ = 8, + ;X + €
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What is statistical learning?
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at is statistical learning?

A\ A

f is least squares fit f is smooth thin-plate spline
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Why estimate / ?

1. Prediction
- Often X values are easy to obtain, but Y values require some effort to measure

- Since € is often assumed to be mean zero, we can make predictions of Y using f

- Predictions: ?zf(X)

Prediction

Response Y

True regression
function

Note: be careful with extrapolation!
New input X

Predictor
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Why estimate / ?

2. Inference
« Want to better understand the association between Y and X = (X, X,, . ..

- Which of the X, X,, . .. ,Xp have an important association with Y?

What is the relative important of each X, X,, . . ., Xp in explaining Y?

- What is the form of the relationship? Linear? Non-linear?
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When to use statistical learning

e (Great at picking out relationships from data, but only when you have enough data

- Parametric models: require less data because you specify a general form of the model ( 1)

e.g. linear regression: Y = B, + S, X + ¢

- Non-parametric models: usually require more data because you don’t specify a form of the model ( f)

e.g. smoothing spline: Z (y; —f(xl-))2 + A Jf”(t)zdt
i=1

e Can be very flexible, interpretable, and accurate

« Usually come with some way of performing uncertainty quantification
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When to consider another model

* There is not enough data to properly train / estimate parameter values

 Example:

- Modeling hospitalizations from Omicron.

- Could use a mechanistic model instead (e.g., SIR ODE model)

ds  PIS

dt N’
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Types of problems that statistical learning can address

Statistical learning

N

Unsupervised learning Supervised learning

N

Regression Classification
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Types of problems that statistical learning can address

Unsupervised Learning
We observe measurements X = (X, X,, . .. ,Xp) but no

Statistical learning associated response Y

Example: k-means clustering
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Types of problems that statistical learning can address

Supervised Learning
We observe measurements X = (X, X,, . .. ,Xp) and associated

Statistical learning response Y

Supervised
learning

Regression Classification

Can be divided into two problems based on the form of Y

 Regression - model a continuous response

n rvi . : .
Unsupervised * Classification - model a categorical response

learning
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Unsupervised
learning
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Statistical learning

Regression

Supervised
learning

Classification

Types of problems that statistical learning can address

Regression

We observe measurements X = (X, X,, . .. ,Xp) and associated

response Y that takes continuous values

Example: simple linear regression
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Types of problems that statistical learning can address

Classification
We observe measurements X = (X, X,, . .. ,Xp) and associated

Statistical learning response Y that takes categorical values

Example: k-nearest neighbors

Unsupervised Supervised REEEEETIEITE
learning learning R
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Regression
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Regression

Statistical learning

Unsupervised Supervised
learning learning

Regression Classification
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Simple linear regression

» Assume a model of the form: Y = f, + /X + €, where X is a single variable!

« Just have to estimate two parameters for prediction and inference: Y = ,BAO + ,BAlX

e (Good for answering:

- Is there a relationship between Y o o °
and X? How strong is this ] d
relationship? Is it linear? . ° o . ° 3
00 oO o oO . oo oo . O o
- Can we make accurate Po=0.15 e o 2.7 o "
. . . f) A © o Q)O ) Ooo ° O ©
predictions of Y using X" B, = —0.002 F SO, o . .o
0 20 40 60 80 100
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Simple linear regression

« Assume a model of the form: Y = f, + ;X + €

 Assumptions:

1. There is a linear relationship between Y

and X
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Simple linear regression

« Assume a model of the form: Y = f, + ;X + €

 Assumptions:

1. There is a linear relationship between Y
and X

2. Independent residuals. How was the data
collected?
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Residuals = observations - predictions

Simple linear regression

« Assume a model of the form: Y = f, + ;X + €

=Y-Y

 Assumptions:

o T o
1. There is a linear relationship between Y - o0 o 0% % °
and X SR IISWE T DRV e
| ) o O O 04 9 o o
2. Independent residuals. e L, | 1 -
2 1 0 1 2
3. Residuals have constant variance. X
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Residuals = observations - predictions

Simple linear regression

« Assume a model of the form: Y = f, + ;X + €

=Y-Y

 Assumptions:

1. There is a linear relationship between Y
and X S

0 2 4 6

4
|

2. Independent residuals. - - | | | I

3. Residuals have constant variance.

4. Residuals are normally distributed.

Sample Quantiles

Theoretical Quantiles
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Simple linear regression
— ﬁo + ,BlX + €

« Assume a model of the form: Y

« Example: sales = 3, + ; X TV

|s there a relationship between
Y and X?

How strong is this
relationship?

Is it linear?
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Simple linear regression

« Assume a model of the form: Y = f, + ;X + €

« Example: sales = 3, + ; X TV

- Is there a relationship between
Y and X?

- How strong is this
relationship?

Sales

- Is it linear?

100 150 200 250 300

TV
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Multiple linear regression

« Assume a model of the form: Y = fy + | X, + )Xo + .. + X, + €

e (Good for answering:

- Is at least one of the X] useful
in predicting Y7

- Are all p predictors necessary,
or will only a subset suffice?

- How accurate are the

predictions? How well does
the model fit?
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Multiple linear regression

 What if there is a relationship between the predictors? What is a non-linear
relationship is present?

 Can add interaction terms: X =0
» = U if male

X, = 1l if female
No interaction

Y'=[fo+ p1Xi + P X5t €

150
|

_<
100

Y=py+ )X +€

50

TS F Y =B+ B X+ B+ e

X1
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Multiple linear regression

 What if there is a relationship between the predictors? What is a non-linear
relationship is present?

X, = lif female

e Can add interaction terms:

No interaction Interaction

150
|
160

_<
100
| /
100

50

Y = [y + P X) + PoXo+ 13X X, +e

Y=py+ )X +€

Y =fy+ PiX + P+ PX +e

50

X1
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Multiple linear regression

 What if there is a relationship between the predictors? What is a non-linear
relationship is present?

e Can add interaction terms or terms:

|

8000 10000

]

Red curve: Y = f,+ X, + €

6000
l

4000

Blue curve: Y = S, + X+ +€

2000
I

0
1

Is the blue model still linear regression??

0 20 40 60 80 100
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Least squares for fitting regression models

o MLRY=ﬁ0+ﬁ1X1+ﬁ2X2++ﬁpo+€

Average of Squared Errors = 1.00

« Choose the ,BAO, ,BAl, . ,,BAp that minimize the sum
of squared residuals: - -

RSS = ), ;= )’
=1

Slope = 0.00

— Z (yl _ﬂO _ﬁl‘xil  eee _ﬂp'xip)z
=1
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What happens when you have many predictor variables?

* [wo problems with high dimensional data

1. Interpretability: Hard to summarize conclusions from a model with 100,000 predictor variables.
Even harder when you include first, second, third, etc. order interactions

Estimate
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What happens when you have many predictor variables?

* [wo problems with high dimensional data

1. Interpretability

2.0

2. Prediction accuracy:

- If number of observations (n) is not much
larger than number of predictor variables (p),
then least squares fit can have high variability.

1.5

1.0

- If n < p, then least squares fit does not have
unique solution (infinite variance!)

0.5

0.0
|

0.0 0.5 1.0 1.5 2.0
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Regularization for model fitting

 Regularization helps with:

- Interpretability: certain methods can perform variable selection (setting coefficient estimates to
EXACTLY zero)

- Prediction accuracy: shrinks estimated coefficients towards zero (this reduces model variability)

Note: regularization has the same goal as least squares -> estimate [, . . . ,,Bp
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Regularization for model fitting

 Regularization helps with:

- Interpretability: certain methods can perform variable selection (setting coefficient estimates to
EXACTLY zero)

- Prediction accuracy: shrinks estimated coefficients towards zero (this reduces model variability)

A\

« Example: the LASSO coefficient estimates ﬁAO, e ﬂp minimize:

Controls overall
magnitude of
coefficients

Controls how well
model fits the data

Balance between model fit and
coefficient magnitude balanced by A

QED - Feb 28, 2022 Will Daniels - wdaniels@mines.edu



What role does 4 play?

S T~ » A balances model fit and size of
e g coefficient estimates
g : ..\\ ...... |
% S 1 ... \\\ o HOW .to p'Cki?
O g | . E
é - NG - Test many different A options, pick the
s one that optimizes a performance
5 - — Income measure
N = - - - Limit
D aound - E.g., adjusted R?, BIC, AIC, out of
— 1 sample prediction error
20 50 100 200 500 2000 5000
A
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Regression summary

* Linear regression
- easy to implement
- provides advantages in terms of interpretability and inference compared to non-linear methods
- Methods for fitting parameters that we covered

1. Least squares (minimize residual sum of squares)

2. Regularization (minimize balance between RSS and size of coefficients)
 (Can improve least squares fit by reducing complexity
 Use it when you have many predictor variables

e |t still assumes a linear model
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Other regression methods

e Linear assumption can only go so far! Other methods for regression:
- Smoothing splines
- K-nearest neighbors

- Tree-based methods

All of these address the same problem!

Try to estimate relationship between X and Y
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Polynomial Regression

S 7 : Polynomiali |
SmOOthlng Spllnes cc; Natural Cubic Spline
- Want a smooth curve, g(x;), that fits the data ., §-
well. S 3-
. gg a >//////""//’5N:”=-_-_—‘_——-==§‘§::=§N«Z{1\
- Thatis, minimize )" (v, — g(x))? 3 -
=1 | | | | | | |
20 30 40 50 60 70 80
- Without constraint, g(x;) will interpolate!
Smoothing spline
] —— 16 Degrees of Freedom
n o —— 6.8 Degrees of Freedom (LOOCV)
+ Pick g that minimizes: )" (y — g(x))) + ,1[ o"(1)2dt 0
l=1 8) (% —
s _

J g"(t)*dt is a measure of total change in the function g'(¢)

50 100
I

0
I
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K-nearest neighbors

Non-parametric method

Parametric approach (linear regression) tends to y
outperform non-parametric approach (KNN) when
selected model form is close to the true relationship

You want a prediction of Y at some set of predictor
variable values, X,,.

- Pick a value K

- KNN returns the average of the corresponding response values ( Y')
of the K closest data points to X, .

Be careful with high dimensions!
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Tree-based methods

 Simple and easy to interpret

¢ Segment the predictor space into regions

« To make a prediction for Xx;;, use the
mean response for the training o e

observations in the region to which Xx; A S

4.622 5.183

RBI 4 60.5 Hits <|117.5

Walks|< 43.5 Walks|< 52.5

belongs s Ear |
6.407 6.549 Years[< 6.5 |
6.015 5.571 2 289

6.459 7.007

Years < 4.5
|

 “Top-down, greedy” method used to fit
the full tree

1.0

0.8

 Use CV to go back and “prune” the full
tree to reduce variability

0.4

0.2

0.0
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Classification

Statistical learning

Unsupervised Supervised
learning learning

Regression Classification
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Classification problem overview

. We observe measurements X = (X, X,, ... ,Xp) and associated response Y that
takes categorical values

« Why not encode the categories in ¥ as numbers and use linear regression?

1 1if stroke;
Y =<2 1if drug overdose;

3 1f epileptic seizure.

* Will discuss three methods for classification: logistic regression, KNN, tree-based
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Logistic regression

« Consider a categorical Y with two options: Yes or No § S -
» Interested in modeling p(X) = Pr(Y = Yes| X), where £ 3-
X:(Xl”Xp) Eg_
* Logistic regression similar to linear regression, but model output = | I . I I
restricted to [O 1] 0 500 1000 1500 2000 2500
’ Balance
* Use the logistic function:
eﬁ0+ﬁ1X1 ko H0,X, . D e o
X) = g 3-
p( ) 1 + eﬁ0+ﬁ1X1+...+ﬁpo % o
£ < _
* Fit coefficients using “maximum likelihood” ;5 o
o
. To make predictions, set some threshold on p(X) to distinguish Yes’No ~ ~ L
0 500 1000 1500 2000 2500
* Extensions available for categorical response that take > 2 values Balance
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- K=3
K-nearest neighbors
e Very similar to KNN in a regression setting @ °
« Given a value K and prediction point X,
- KNN sets the class of x; to be the most common class in A/,

- where /I, are the K training observations closest to x;,
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Tree-based methods

Linear approach Tree-based approach
o (Classification tree very similar to
regression tree T T
¢ Segment the predictor space into regions
« To make a prediction for Xx;;, use the most oy
common class for the training S D
observations in the region to which X, . .
belongs
2 4 0 1 2 2 4 0 1 2
X, X,
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Model Evaluation
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General considerations

* Does it make sense to use a statistical model? How much data is available for training?
Would a mechanistic model be better suited?

* Regression vs. classification?

* Does their model violate any assumptions? Are they using a model in a sub-optimal
setting (e.g., KNN with large p)?

* Are the performance metrics suitable?

s - ° g -
L
» o L
Q _ = ° ) _ .
- > = 3 Simulated example
3 - £ ° ke with n = 20
= N -
| | | S | | | S | | |
5 10 15 5 10 15 5 10 15
Number of Variables Number of Variables Number of Variables

R? and training MSE can make model look good when it is not!
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Summary

Statistical learning involves building models to capture relationships in data

Statistical learning Reg ression
 Simple linear regression * Logistic regression
* Multiple linear regression * K-nearest neighbors
 Smoothing splines * Tree-based methods
Unsupervised Supervised

* K-nearest neighbors
 Tree-based methods

learning learning

Regression

Which method to use? Check assumptions, then start simple and get more complex if necessary.
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Great reference text

Gareth James
* Free pdf at: https://www.statlearning.com/ Daniela Witten
Trevor Hastie

Robert Tibshirani

 Most of the images in this talk taken from ISLR

An Introduction
to Statistical

Learning

Second Edition
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Statistical learning example:

What are the drivers of fire season intensity In

Maritime Southeast Asia?

NCAR




Motivation

Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result
of biomass burning.

b 000 October 2015
( ) <-200 -13 -7 -1 5 11 17 23 > 30.0 -

30 CO column anomaly (%) Indlc:>_ne5|an Palangkaraya
ires aya,

20 J" 4 Australian Indonesia
January 2020

Canberra,

Australia

Fs"‘

: 'wj( = Atl /j" /‘3
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Motivation

Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result
of biomass burning.

October 2015
Palangkaraya,
Indonesia
Our goals:
1. Predict CO at useful lead times
2. Build interpretable models for scientific conclusions
January 2020
Canberra,
Australia
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Response variable: carbon monoxide

e Use multiple linear regression to model atmospheric CO
e CO aggregated within the MSEA biomass burning region via spatial and temporal averages

Mean carbon monoxide [ppDb]

@ S

10

—1 Maritime 160

s e
TR ‘!t‘ ' X ¢/ ef. .. |Southeast
l'o’f 1 ' R,

-
140
o
' 120
o
N
100
o
S
80
o
Y
60
-
0

-40 -20 0 20 40 60 80 100 120 140 160 180 -160 -140 -120
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Response variable: carbon monoxide

Response variable: Deseasonalized, week-averaged CO anomalies at time t
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Predictor variables: climate mode indices

o

Nino 3.4 (NINO)

M Dipole Mode Index (DMI)

Tropical South Atlantic (TSA)

-1.5 1.5

25 25

e
i

Scaled Anomaly
15 15

Antarctic Oscillation (SAM)

-1.5 1.5

Outgoing Longwave Radiation
(OLR)

-15 1.5

2008 | 2009 | 2010 , 2011 | 2012 , 2013 |, 2014 , 2015 | 2016 , 2017 | 2018 | 2019
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Predictor variables: climate mode indices

Predictor variables: \Week-averaged climate mode indices lagged at time t- 7

Carbon monoxide standard deviation [ppb]

/p@ | o | — 80

(b) | ,‘\.‘\"P .“ o -i N J
- CORAS Nino 3.4
? 1’ 7 \< A J i

DMI

50 -40 -30 -20 10 O 10

| | |
-40 -20 0 20 40 60 80 100 120 140 160 180 -160 -140 -120

QED - Feb 28, 2022 Will Daniels - wdaniels@mines.edu



Statistical model

We use lagged multiple linear regression model with first order interactions and squared terms

k i z

Main effects Squared terms

CO(t) = u+

CO(t) - CO anomaly in a given response region at time t
u - constant mean displacement

¥ - climate indices
T - lag value for each index in weeks
€(t) - error term
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Regularization for variable and lag selection

We consider lags between 1 and 52 weeks for each index
 Results in far more covariates than observations
* Regularization well suited for this regime (p >> n)

. p
ﬁ = argmin Z (Y; — Xiﬁ)z T Zp(ﬂ])
B =1 J=1
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Regularization for variable and lag selection

We consider lags between 1 and 52 weeks for each index
 Results in far more covariates than observations
* Regularization well suited for this regime (p >> n)

—— LASSO Penalty
— = MCP Penalty

. p
ﬁ = argmin Z (Y; — Xiﬁ)z T Zp(ﬂ])
B =1 J=1

We use the minimax concave penalty (MCP)

LASSO | p(p) = 4|/

QIS GIED G CGIED CGED 2o
e

QED - Feb 28, 2022 Will Daniels - wdaniels@mines.edu



Regularization for variable and lag selection

Evaluate models along the solution path via the extended Bayesian information
criterion (EBIC)

 Similar to BIC, but can increase penalty on larger models
 Control with free parameter y € |0,1]

e ¥ — 1 results in smaller models
« ¥ — 0 results in the BIC (and hence larger models)

Free parameters:

Picking parameter values

e For a given y, vary 7 and 4 in a grid search Regularization — A
* Pick the model that minimizes EBIC for that y MCP — 1

: i |
More on ¥ selection to come! EBIC — y
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Interpretable models lead to scientific conclusions

y =1

ESh S EiE EEGO )

g Smallest model highlights important climate-chemistry
dmi_4 7.2 (0.93) connections:
dmi_ 12 -8.0 (0.87)
o i Eg%; 1. NINO has strong influence on CO at a four week lead time
I(nino_4A2) 2.5 (0.54)
nino_4:o0lr_1 SO 6
nino_4:dmi_12 -6.5 (0.77)
sllo) al=(odle ial - —anmy (({{c)alaird)

Adjusted R-squared: ©0.60
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Interpretable models lead to scientific conclusions
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Interpretable models lead to scientific conclusions

y =1

ESh S EiE EEGO )

gggegcep” o bl Smallest model highlights important climate-chemistry
dmi_4 Lo connections:

dmi_12 (0.87)

gig_ii (G-%; 1. NINO has strong influence on CO at a four week lead time

I(n1no_4An2)
= Nino 4:01r 1
=g Nino 4:dmi 12 -

Sl ley Sabaral e el

(0.54) 2. Effect of DMI depends on length of lag

(0.76)

Eg;;; 3. NINO interactions suggest that NINO amplifies effect of other indices
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©

Adjusted R-squared: ©0.60
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y =0
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Adjusted R-squared:
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Model has good predictive sKill

OLR helps capture the most extreme CO anomalies
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Model has good predictive skill at useful lead time
MSEA CO anomaly in 2015 [ppb]

35 —
30 — I 80
R2 = 0.68 _25!
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Conclusions

We are using natural variability in the climate to model atmospheric CO (a proxy for fire intensity)

e Interpretable models help explain natural drivers of fire season intensity

e Models have good predictive skill up to lead times of ~6 months in MSEA

MSEA CO anomaly in 2015 [ppDb]

Esiie SR EREGRO) 35

(Intercept) -1.6 (0.78)
nino 4 Tiera ({elaqiag 30
dmi_4 7.2 (0.93)
dmi_12 -8.0 (0.87) 25 —
aao_51 =S8 6 Minimum
ol al 3.5 (0.79) lag 20~
I(nino_4n2) 2.5 (0.54) [weeks] 40
nino_4:0lr 1 3.5 (0.76) 157
nino_4:dmi_12 -6.5 (0.77)

_ 10
da@G ST = anilEE e DS (067 — 20

O — I

-
. ' MOPITT |
Adjusted R-squared: 0.60 observations [ | , , | ,

Sep-2 Sep-16 Sep-30 Oct-14 Oct-28 Nov-11 Nov-25 Dec-9 Dec-23

QED - Feb 28, 2022 Will Daniels - wdaniels@mines.edu



Thank you! Questions?
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