## **Building Intuition around Common Statistical Learning Techniques**

Will Daniels Department of Applied Mathematics and Statistics **Colorado School of Mines** 

February 28, 2022



### EARTH • ENERGY • ENVIRONMENT

# Three important principles

- 1. Statistical learning methods are useful in a wide range of disciplines
- 2. Statistical learning should not be viewed as a black box
- 3. While it is important to understand the strengths, weaknesses, and assumptions of each statistical learning method, it is not necessary to build them from scratch





### Great reference text

- Free pdf at: <u>https://www.statlearning.com/</u>
- Most of the images in this talk taken from ISLR

# <u>om/</u>

**Springer Texts in Statistics** 

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

### An Introduction to Statistical Learning

with Applications in R

Second Edition





# Agenda

- Introduction: what is statistical learning?
- Two common problems statistical learning can address
  - Regression techniques and their interpretation
  - Classification techniques and their interpretation
- How to evaluate a statistical learning model?
- Stat learning example: What are the drivers of fire season intensity in MSEA?
- R implementation





QED - Feb 28, 2022

Will Daniels - wdaniels@mines.edu



- Methods to estimate the relationship between variables (i.e., data)
- Given:
  - some response variable, Y
  - *p* different predictor variables,  $X = (X_1, X_2, \dots, X_p)$
- We assume a general relationship:  $Y = f(X) + \epsilon$ 
  - f is some fixed but unknown function
  - $\epsilon$  is a random error term (usually mean zero)

Example is linear regression:  $Y = \beta_0 + \beta_1 X + \epsilon$ 

Statistical learning attempt to estimate the true relationship, f, with some approximation,  $\hat{f}$ 





 $X = (X_1)$ 





7



 $\hat{f}$  is least squares fit



 $\hat{f}$  is smooth thin-plate spline



### Why estimate f?

- 1. Prediction
  - Often X values are easy to obtain, but Y values require some effort to measure -
  - Since  $\epsilon$  is often assumed to be mean zero, we can make predictions of Y using  $\hat{f}$

- Predictions: 
$$\hat{Y} = \hat{f}(X)$$

### Note: be careful with extrapolation!





### Why estimate f?

- 2. Inference
  - Want to better understand the association between Y and  $X = (X_1, X_2, \ldots, X_p)$ •
    - Which of the  $X_1, X_2, \ldots, X_p$  have an important association with *Y*?
    - What is the relative important of each  $X_1, X_2, \ldots, X_p$  in explaining Y?
    - What is the form of the relationship? Linear? Non-linear?



## When to use statistical learning

- Great at picking out relationships from data, but only when you have enough data
  - **Parametric models:** require less data because you specify a general form of the model (f)

e.g. linear regression:  $Y = \beta_0 + \beta_1 X + \epsilon$ 

- Non-parametric models: usually require more data because you don't specify a form of the model (f)

- Can be very flexible, interpretable, and accurate
- Usually come with some way of performing uncertainty quantification

 $f''(t)^2 dt$ 



11

## When to consider another model

- There is not enough data to properly train / estimate parameter values lacksquare
- Example:
  - Modeling hospitalizations from Omicron.
  - Could use a mechanistic model instead (e.g., SIR ODE model)



$$\left( egin{array}{c} rac{dS}{dt} = -rac{eta IS}{N}, \ rac{dI}{dt} = rac{eta IS}{N} - \gamma I, \ rac{dR}{dt} = \gamma I, \end{array} 
ight.$$





QED - Feb 28, 2022







### **Unsupervised Learning**

We observe measurements  $X = (X_1, X_2, \ldots, X_p)$  but no associated response Y

**Example:** *k*-means clustering

![](_page_13_Figure_7.jpeg)

![](_page_13_Picture_8.jpeg)

![](_page_13_Picture_15.jpeg)

![](_page_14_Figure_1.jpeg)

### **Supervised Learning**

We observe measurements  $X = (X_1, X_2, \ldots, X_p)$  and associated response Y

Can be divided into two problems based on the form of Y

- **Regression** model a continuous response
- **Classification** model a categorical response

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

![](_page_15_Figure_1.jpeg)

### Regression

We observe measurements  $X = (X_1, X_2, \ldots, X_p)$  and associated response Y that takes **continuous** values

**Example:** simple linear regression

![](_page_15_Figure_7.jpeg)

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

![](_page_15_Picture_11.jpeg)

### Types of problems that statistical learning can address Classification response Y that takes categorical values Statistical learning **Example:** k-nearest neighbors Unsupervised Supervised learning learning

Classification

Regression

We observe measurements  $X = (X_1, X_2, \dots, X_p)$  and associated

![](_page_16_Figure_5.jpeg)

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

![](_page_17_Figure_0.jpeg)

### Regression

Will Daniels - wdaniels@mines.edu

![](_page_17_Picture_5.jpeg)

# Simple linear regression

- Assume a model of the form:  $Y = \beta_0 + \beta_1 X + \epsilon$ , where X is a single variable!
- Good for answering:
  - Is there a relationship between Yand *X*? How strong is this relationship? Is it linear?
  - Can we make accurate predictions of *Y* using *X*?

• Just have to estimate two parameters for prediction and inference:  $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ 

![](_page_18_Figure_9.jpeg)

![](_page_18_Picture_11.jpeg)

### Simple linear regression • Assume a model of the form: $Y = \beta_0 + \beta_1 X + \epsilon$

- Assumptions:
  - 1. There is a linear relationship between Yand X

![](_page_19_Figure_7.jpeg)

![](_page_19_Picture_8.jpeg)

# Simple linear regression

- Assume a model of the form:  $Y = \beta_0 + \beta_1 X + \epsilon$
- Assumptions:
  - 1. There is a linear relationship between Yand X
  - 2. Independent residuals. How was the data collected?

![](_page_20_Picture_7.jpeg)

![](_page_20_Picture_8.jpeg)

21

### Residuals = observations - predictions Simple linear regression $= Y - \hat{Y}$

- Assume a model of the form:  $Y = \beta_0 + \beta_1 X + \epsilon$
- Assumptions:
  - 1. There is a linear relationship between Yand X
  - Independent residuals. 2.
  - 3. Residuals have constant variance.

![](_page_21_Figure_10.jpeg)

![](_page_21_Figure_11.jpeg)

![](_page_21_Picture_12.jpeg)

### Residuals = observations - predictions Simple linear regression $= Y - \hat{Y}$

- Assume a model of the form:  $Y = \beta_0 + \beta_1 X + \epsilon$
- Assumptions:
  - 1. There is a linear relationship between Yand X
  - 2. Independent residuals.
  - 3. Residuals have constant variance.
  - 4. Residuals are normally distributed.

![](_page_22_Figure_11.jpeg)

![](_page_22_Picture_12.jpeg)

![](_page_22_Picture_13.jpeg)

# Simple linear regression

- Assume a model of the form:  $Y = \beta_0 + \beta_1 X + \epsilon$
- Example: sales =  $\beta_0 + \beta_1 \times TV$ 
  - Is there a relationship between Y and X?
  - How strong is this \_ relationship?
  - Is it linear?

![](_page_23_Figure_10.jpeg)

![](_page_23_Picture_12.jpeg)

# Simple linear regression

- Assume a model of the form:  $Y = \beta_0 + \beta_1 X + \epsilon$
- Example: sales =  $\beta_0 + \beta_1 \times TV$ 
  - Is there a relationship between Y and X?
  - How strong is this \_ relationship?
  - Is it linear?

![](_page_24_Figure_10.jpeg)

![](_page_24_Picture_12.jpeg)

- Assume a model of the form:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \epsilon$
- Good for answering:
  - Is at least one of the  $X_i$  useful in predicting *Y*?
  - Are all *p* predictors necessary, or will only a subset suffice?
  - How accurate are the predictions? How well does the model fit?

![](_page_25_Figure_9.jpeg)

![](_page_25_Picture_11.jpeg)

- What if there is a relationship between the predictors? What is a non-linear relationship is present?
- Can add interaction terms:

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_9.jpeg)

- What if there is a relationship between the predictors? What is a non-linear relationship is present?
- Can add interaction terms:

![](_page_27_Figure_3.jpeg)

X1

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

- What if there is a relationship between the predictors? What is a non-linear relationship is present?
- Can add interaction terms or higher order terms:

Red curve:  $Y = \beta_0 + \beta_1 X_1 + \epsilon$ Blue curve:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \epsilon$ 

Is the blue model still **linear** regression?

![](_page_28_Figure_9.jpeg)

Will Daniels - wdaniels@mines.edu

![](_page_28_Picture_11.jpeg)

### Least squares for fitting regression models

- MLR:  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \epsilon$
- Choose the  $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_p$  that minimize the sum of squared residuals:

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_p)$$

![](_page_29_Figure_7.jpeg)

![](_page_29_Picture_9.jpeg)

### What happens when you have many predictor variables?

- Two problems with high dimensional data lacksquare
  - Even harder when you include first, second, third, etc. order interactions

|             | Estimate   | dataX73 | -0.2317563 | dataX206 | -0.8356072 |
|-------------|------------|---------|------------|----------|------------|
| (Intercept) | 0.2156926  | dataX74 | 0.0108767  | dataX207 | -0.0950663 |
| dataX1      | -0.2141724 | dataX75 | 1.2230716  | dataX208 | -0.6155767 |
| dataX2      | -0.5122957 | dataX76 | -0.1464685 | dataX209 | 0.1644539  |
| dataX3      | 0.1171434  | dataX77 | 0.2441201  | dataX210 | 0.3324333  |
| dataX4      | 0.0719710  | dataX78 | 0.6476761  | dataX211 | 0.0987915  |
| dataX5      | 0.8538264  | dataX79 | 1.1774111  | dataX212 | -0.6526612 |
| dataX6      | 0.7151485  | dataX80 | -0.7780623 | dataX213 | 0.4841048  |
| dataX7      | 0.2723380  | dataX81 | 0.5206766  | dataX214 | 0.3967542  |
| dataX8      | -0.6684414 | dataX82 | 0.7919490  | dataX215 | 0.5935250  |
| dataX9      | 0.7645613  | dataX83 | 0.3892354  | dataX216 | -1.0240238 |
| dataX10     | -0.8755725 | dataX84 | -0.5359459 | dataX217 | 0.1890421  |
| dataX11     | -0.1164399 | dataX85 | 0.6392728  | dataX218 | 1.0827865  |
| dataX12     | 0.7995498  | dataX86 | -0.6506848 | dataX219 | 0.1128421  |
| dataX13     | 0.0389759  | dataX87 | 0.5911019  | dataX220 | 0.2807738  |
| dataX14     | -0.8872863 | dataX88 | -0.0154343 | dataX221 | -0.8270341 |
| dataX15     | -0.3894061 | dataX89 | 1.0198047  | dataX222 | -1.7440725 |
| dataX16     | 0.1546200  | dataX90 | -1.0254036 | dataX223 | -0.5586615 |
| dataX17     | -0.2036463 | dataX91 | 0.6058202  | dataX224 | 0.0805911  |
| dataX18     | 0.0699375  | dataX92 | -0.7472141 | dataX225 | -0.3311416 |
| dataX19     | 0.3227768  | dataX93 | 0.0364057  | dataX226 | 0.2456106  |
| dataX20     | 0.0712609  | dataX94 | -0.0780022 | dataX227 | -0.8335148 |
| dataX21     | 0.1855488  | dataX95 | -0.0302979 | dataX228 | -0.0895120 |
| dataX22     | 0.1165093  | dataX96 | -0.3069039 | dataX229 | -0.2507370 |
| dataX23     | -0.6650188 | dataX97 | 1.1033568  | dataX230 | -0.0087415 |
| dataX24     | 0.6449516  | dataX98 | -0.3277939 | dataX231 | -0.3336044 |
| dataX25     | -0.1417421 | dataX99 | -0.2405781 | dataX232 | 0.4398568  |

1. Interpretability: Hard to summarize conclusions from a model with 100,000 predictor variables.

![](_page_30_Picture_8.jpeg)

### What happens when you have many predictor variables?

- Two problems with high dimensional data
  - Interpretability 1.
  - 2. **Prediction accuracy**:
    - If number of observations (n) is not much larger than number of predictor variables (p), then least squares fit can have high variability.
    - If n < p, then least squares fit does not have unique solution (infinite variance!)

![](_page_31_Figure_9.jpeg)

![](_page_31_Figure_11.jpeg)

![](_page_31_Picture_12.jpeg)

# **Regularization for model fitting**

- Regularization helps with:
  - EXACTLY zero)

**Interpretability:** certain methods can perform variable selection (setting coefficient estimates to

**Prediction accuracy:** shrinks estimated coefficients towards zero (this reduces model variability)

Note: regularization has the same goal as least squares -> estimate  $\beta_0, \ldots, \beta_p$ 

![](_page_32_Picture_10.jpeg)

# **Regularization for model fitting**

- Regularization helps with:
  - EXACTLY zero)
- Example: the LASSO coefficient estimates  $\hat{\beta}_0, \ldots, \hat{\beta}_n$  minimize:

Controls how well model fits the data

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - y_i \right)$$

Balance between model fit and coefficient magnitude balanced by  $\lambda$ 

**Interpretability:** certain methods can perform variable selection (setting coefficient estimates to

**Prediction accuracy:** shrinks estimated coefficients towards zero (this reduces model variability)

![](_page_33_Figure_14.jpeg)

Controls overall magnitude of coefficients

![](_page_33_Picture_16.jpeg)

## What role does $\lambda$ play?

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_4.jpeg)

- $\lambda$  balances model fit and size of coefficient estimates
- How to pick  $\lambda$ ?
  - Test many different  $\lambda$  options, pick the one that optimizes a performance measure
  - E.g., adjusted  $R^2$ , BIC, AIC, out of sample prediction error

![](_page_34_Picture_10.jpeg)

## **Regression summary**

- Linear regression
  - easy to implement
  - provides advantages in terms of interpretability and inference compared to non-linear methods
  - Methods for fitting parameters that we covered
    - 1. Least squares (minimize residual sum of squares)
    - 2. Regularization (minimize balance between RSS and size of coefficients)
      - Can improve least squares fit by reducing complexity
      - Use it when you have many predictor variables
      - It still assumes a linear model

![](_page_35_Picture_12.jpeg)

## **Other regression methods**

- Linear assumption can only go so far! Other methods for regression: lacksquare
  - Smoothing splines
  - K-nearest neighbors
  - Tree-based methods

All of these address the same problem!

Try to estimate relationship between X and Y

![](_page_36_Picture_10.jpeg)

# **Smoothing splines**

• Want a smooth curve,  $g(x_i)$ , that fits the data well.

- That is, minimize 
$$\sum_{i=1}^{n} (y_i - g(x_i))^2$$

- Without constraint,  $g(x_i)$  will interpolate!
- Pick g that minimizes:

$$\sum_{i=1}^{n} (y - g(x_i))^2 + \lambda$$

•  $\int g''(t)^2 dt$  is a measure of total change in the function g'(t)

### **Polynomial Regression**

![](_page_37_Figure_10.jpeg)

![](_page_37_Picture_11.jpeg)

## **K-nearest neighbors**

- Non-parametric method
- Parametric approach (linear regression) tends to outperform non-parametric approach (KNN) when selected model form is close to the true relationship
- You want a prediction of Y at some set of predictor variable values,  $X_0$ .
  - Pick a value K
  - KNN returns the average of the corresponding response values (Y) of the K closest data points to  $X_0$
- Be careful with high dimensions!

![](_page_38_Figure_12.jpeg)

![](_page_38_Figure_13.jpeg)

![](_page_38_Picture_14.jpeg)

### **Tree-based methods**

- Simple and easy to interpret
- Segment the predictor space into regions
- To make a prediction for  $x_0$ , use the mean response for the training observations in the region to which  $x_0$ belongs
- "Top-down, greedy" method used to fit the full tree
- Use CV to go back and "prune" the full tree to reduce variability

![](_page_39_Figure_8.jpeg)

![](_page_39_Picture_10.jpeg)

![](_page_40_Figure_0.jpeg)

### Classification

Will Daniels - wdaniels@mines.edu

![](_page_40_Picture_7.jpeg)

## **Classification problem overview**

- takes categorical values
- Why not encode the categories in Y as numbers and use linear regression?

$$Y = \begin{cases} 1 & \text{if str} \\ 2 & \text{if dru} \\ 3 & \text{if epi} \end{cases}$$

• We observe measurements  $X = (X_1, X_2, \ldots, X_p)$  and associated response Y that

oke;

lg overdose;

leptic seizure.

Will discuss three methods for classification: logistic regression, KNN, tree-based

![](_page_41_Picture_12.jpeg)

# Logistic regression

- Consider a categorical Y with two options: Yes or No lacksquare
- Interested in modeling  $p(X) = \Pr(Y = \operatorname{Yes} | X)$ , where  $X = (X_1, \ldots, X_p)$
- Logistic regression similar to linear regression, but model output restricted to [0,1]
- Use the logistic function:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p}}$$

- Fit coefficients using "maximum likelihood" ullet
- To make predictions, set some threshold on p(X) to distinguish Yes/No
- Extensions available for categorical response that take > 2 values

![](_page_42_Figure_11.jpeg)

![](_page_42_Figure_13.jpeg)

![](_page_42_Figure_14.jpeg)

![](_page_42_Picture_15.jpeg)

## K-nearest neighbors

- Very similar to KNN in a regression setting
- Given a value K and prediction point  $x_0$ 
  - KNN sets the class of  $x_0$  to be the most common class in  $\mathcal{N}_0$ —
  - where  $\mathcal{N}_0$  are the K training observations closest to  $x_0$

K=3

![](_page_43_Figure_8.jpeg)

![](_page_43_Figure_10.jpeg)

![](_page_43_Figure_11.jpeg)

![](_page_43_Picture_13.jpeg)

### **Tree-based methods**

- Classification tree very similar to regression tree
- Segment the predictor space into regions
- To make a prediction for x<sub>0</sub>, use the most common class for the training observations in the region to which x<sub>0</sub> belongs

![](_page_44_Figure_6.jpeg)

![](_page_44_Picture_7.jpeg)

QED - Feb 28, 2022

### **Model Evaluation**

Will Daniels - wdaniels@mines.edu

![](_page_45_Picture_5.jpeg)

### **General considerations**

- Would a mechanistic model be better suited?
- Regression vs. classification?
- setting (e.g., KNN with large p)?
- Are the performance metrics suitable?

![](_page_46_Figure_5.jpeg)

 $R^2$  and training MSE can make model look good when it is not!

Does it make sense to use a statistical model? How much data is available for training?

Does their model violate any assumptions? Are they using a model in a sub-optimal

Will Daniels - wdaniels@mines.edu

![](_page_46_Picture_13.jpeg)

![](_page_46_Picture_15.jpeg)

## Summary

Statistical learning involves building models to capture relationships in data

![](_page_47_Figure_2.jpeg)

### Regression

- Simple linear regression
- Multiple linear regression
- Smoothing splines
- K-nearest neighbors
- Tree-based methods

### Classification

- Logistic regression
- K-nearest neighbors •
- Tree-based methods

### Which method to use? Check assumptions, then start simple and get more complex if necessary.

![](_page_47_Figure_19.jpeg)

![](_page_47_Picture_20.jpeg)

![](_page_47_Picture_21.jpeg)

### Great reference text

- Free pdf at: <u>https://www.statlearning.com/</u>
- Most of the images in this talk taken from ISLR

# <u>om/</u>

**Springer Texts in Statistics** 

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

### An Introduction to Statistical Learning

with Applications in R

Second Edition

![](_page_48_Picture_11.jpeg)

![](_page_48_Picture_12.jpeg)

### Statistical learning example:

### What are the drivers of fire season intensity in Maritime Southeast Asia?

![](_page_49_Picture_2.jpeg)

COLORADO SCHOOL OF MINES

QED - Feb 28, 2022

Will Daniels - wdaniels@mines.edu

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_7.jpeg)

### Motivation

Certain Southern Hemisphere regions experience of biomass burning.

![](_page_50_Figure_2.jpeg)

### Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result

![](_page_50_Picture_6.jpeg)

### October 2015

Palangkaraya, Indonesia

![](_page_50_Picture_9.jpeg)

### January 2020

Canberra, Australia

### 2015 aya,

### 2**020** ra, ia

![](_page_50_Picture_14.jpeg)

### Motivation

of biomass burning.

Our goals:

- Predict CO at useful lead times 1
- 2. Build interpretable models for scientific conclusions

### Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result

![](_page_51_Picture_8.jpeg)

### October 2015

Palangkaraya, Indonesia

![](_page_51_Picture_12.jpeg)

### January 2020

Canberra, Australia

![](_page_51_Picture_17.jpeg)

### **Response variable: carbon monoxide**

- Use multiple linear regression to model atmospheric CO

Mean carbon monoxide [ppb]

![](_page_52_Figure_4.jpeg)

• CO aggregated within the MSEA biomass burning region via spatial and temporal averages

![](_page_52_Picture_10.jpeg)

![](_page_52_Figure_11.jpeg)

![](_page_52_Picture_12.jpeg)

### **Response variable: carbon monoxide**

![](_page_53_Figure_1.jpeg)

![](_page_53_Figure_2.jpeg)

### **Response variable:** Deseasonalized, week-averaged CO anomalies at time t

![](_page_53_Picture_6.jpeg)

![](_page_53_Picture_7.jpeg)

### **Predictor variables: climate mode indices**

![](_page_54_Figure_1.jpeg)

all dia an hAndala i

![](_page_54_Figure_4.jpeg)

Dipole Mode Index (DMI)

Tropical South Atlantic (TSA)

Antarctic Oscillation (SAM)

**Outgoing Longwave Radiation** (OLR)

![](_page_54_Picture_9.jpeg)

![](_page_54_Picture_10.jpeg)

![](_page_54_Picture_11.jpeg)

### **Predictor variables: climate mode indices**

**Predictor variables:** Week-averaged climate mode indices lagged at time t -  $\tau$ 

Carbon monoxide standard deviation [ppb]

![](_page_55_Figure_3.jpeg)

QED - Feb 28, 2022

![](_page_55_Picture_7.jpeg)

![](_page_55_Picture_8.jpeg)

### Statistical model

$$CO(t) = \mu + \sum_{k} a_{k} \chi_{k}(t - \tau_{k}) + \sum_{i,j} b_{ij} \chi_{i}(t - \tau_{i}) \chi_{j}(t - \tau_{j}) + \sum_{l} c_{l} \chi_{l}(t - \tau_{l})^{2} + \epsilon(t)$$
  
Main effects Interaction terms Squared terms

CO(t) - CO anomaly in a given response region at time t

- $\mu$  constant mean displacement
- $\chi$  climate indices
- $\tau$  lag value for each index in weeks
- $\epsilon$ (t) error term

### We use lagged multiple linear regression model with first order interactions and squared terms

Will Daniels - wdaniels@mines.edu

![](_page_56_Picture_14.jpeg)

![](_page_56_Picture_15.jpeg)

## **Regularization for variable and lag selection**

### We consider lags between 1 and 52 weeks for each index

- Results in far more covariates than observations
- Regularization well suited for this regime (p >> n)

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \sum_{j=1}^{p} p(\beta_j)$$

Will Daniels - wdaniels@mines.edu

![](_page_57_Picture_8.jpeg)

# **Regularization for variable and lag selection**

### We consider lags between 1 and 52 weeks for each index

- Results in far more covariates than observations
- Regularization well suited for this regime (p >> n)

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \sum_{j=1}^{p} p(\beta_j)$$

We use the minimax concave penalty (MCP)

LASSO 
$$p(\beta) = \lambda |\beta|$$
  
MCP  $p(\beta) = \begin{cases} \lambda |\beta| - \frac{\beta^2}{2\eta} & \text{if } |\beta| \le \eta \\ \frac{\eta \lambda^2}{2} & \text{otherwise} \end{cases}$ 

![](_page_58_Figure_10.jpeg)

![](_page_58_Figure_11.jpeg)

![](_page_58_Picture_13.jpeg)

## **Regularization for variable and lag selection**

Evaluate models along the solution path via the extended Bayesian information criterion (EBIC)

- Similar to BIC, but can increase penalty on larger models
- Control with free parameter  $\gamma \in [0,1]$
- $\gamma \rightarrow 1$  results in smaller models
- $\gamma \rightarrow 0$  results in the BIC (and hence larger models)

### Picking parameter values

- For a given  $\gamma$ , vary  $\eta$  and  $\lambda$  in a grid search
- Pick the model that minimizes EBIC for that  $\gamma$
- More on  $\gamma$  selection to come!

![](_page_59_Figure_15.jpeg)

![](_page_59_Picture_16.jpeg)

### Interpretable models lead to scientific conclusions

```
\gamma = 1
```

| EST (STA. Error)                            |
|---------------------------------------------|
| (Intercept) -1.6 (0.78)                     |
| nino_4 7.2 (0.78)                           |
| dmi_4 7.2 (0.93)                            |
| dmi_12 -8.0 (0.87)                          |
| aao_51 -3.1 (0.67)                          |
| olr_1 3.5 (0.79)                            |
| I(nino_4^2) 2.5 (0.54)                      |
| nino_4:olr_1 3.5 (0.76)                     |
| nino_4:dmi_12 -6.5 (0.77)                   |
| aao_51:olr_1 -2.3 (0.67)                    |
|                                             |
|                                             |
|                                             |
| Addition to a log an internet of the second |

0.00

connections:

### Smallest model highlights important climate-chemistry

1. NINO has strong influence on CO at a four week lead time

![](_page_60_Picture_9.jpeg)

61

### Interpretable models lead to scientific conclusions

```
\gamma = 1
```

| Est (Std. Er          | ror) |
|-----------------------|------|
| (Intercept) -1.6 (0   | .78) |
| nino_4 7.2 (0         | .78) |
| dmi_4 7.2 (0          | .93) |
| dmi_12 -8.0 (0        | .87) |
| aao_51 -3.1 (0        | .67) |
| olr_1 3.5 (0          | .79) |
| I(nino_4^2) 2.5 (0    | .54) |
| nino_4:olr_1 3.5 (0   | .76) |
| nino_4:dmi_12 -6.5 (0 | .77) |
| aao_51:olr_1 -2.3 (0  | .67) |
|                       |      |
|                       |      |
|                       |      |
| Adjusted D squared    | 0 60 |

connections:

### Smallest model highlights important climate-chemistry

1. NINO has strong influence on CO at a four week lead time 2. Effect of DMI depends on length of lag

![](_page_61_Picture_10.jpeg)

62

### Interpretable models lead to scientific conclusions

 $\gamma = 1$ 

| Est           | (Std. | Error) |
|---------------|-------|--------|
| (Intercept)   | -1.6  | (0.78) |
| nino_4        | 7.2   | (0.78) |
| dmi_4         | 7.2   | (0.93) |
| dmi_12        | -8.0  | (0.87) |
| aao_51        | -3.1  | (0.67) |
| olr_1         | 3.5   | (0.79) |
| I(nino_4^2)   | 2.5   | (0.54) |
| nino_4:olr_1  | 3.5   | (0.76) |
| nino_4:dmi_12 | -6.5  | (0.77) |
| aao_51:olr_1  | -2.3  | (0.67) |
|               |       |        |
| Adjusted R-so | uared | 0 60   |

connections:

- 1. NINO has strong influence on CO at a four week lead time
- 2. Effect of DMI depends on length of lag
- 3. NINO interactions suggest that NINO amplifies effect of other indices

### Smallest model highlights important climate-chemistry

![](_page_62_Picture_10.jpeg)

![](_page_62_Picture_12.jpeg)

## Model has good predictive skill

 $\gamma = 0$ 

| Est<br>(Intercept)<br>nino_4<br>dmi_1<br>dmi_12<br>dmi_43<br>tsa_3<br>aao_2<br>aao_2<br>aao_38<br>aao_51<br>olr_1<br>olr_13<br>nino_4:olr_1<br>nino_4:olr_1<br>nino_4:dmi_1<br>dmi_1:dmi_12<br>nino_4:aao_51 | <pre>(Std. Error)<br/>0.3 (0.70)<br/>7.6 (0.83)<br/>5.7 (0.79)<br/>-6.1 (0.75)<br/>1.8 (0.65)<br/>-2.2 (0.64)<br/>-3.6 (0.61)<br/>-2.2 (0.64)<br/>-1.6 (0.63)<br/>2.3 (0.74)<br/>3.4 (0.71)<br/>3.2 (0.81)<br/>-4.5 (0.56)<br/>-4.2 (0.77)</pre> |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| nino_4:aao_51<br>tsa_3:olr_1<br>aao_2:olr_13<br>nino_4:aao_2                                                                                                                                                 | -4.2 (0.77)<br>-2.3 (0.63)<br>-2.1 (0.68)<br>-1.8 (0.70)                                                                                                                                                                                         |  |  |  |
| Adjusted R-squared: 0.68                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |  |  |  |

OLR helps capture the most extreme CO anomalies

![](_page_63_Figure_4.jpeg)

- No OLR Model Predictions
- OLR Model Predictions

Adjusted R<sup>2</sup>

| No        |         |
|-----------|---------|
| OLR Model | OLR Mod |
| 0.66      | 0.68    |

![](_page_63_Figure_11.jpeg)

![](_page_63_Picture_13.jpeg)

### Model has good predictive skill at useful lead time MSEA CO anomaly in 2015 [ppb]

![](_page_64_Figure_1.jpeg)

Will Daniels - wdaniels@mines.edu

![](_page_64_Picture_5.jpeg)

65

### Conclusions

- Interpretable models help explain natural drivers of fire season intensity
- Models have good predictive skill up to lead times of ~6 months in MSEA

![](_page_65_Figure_4.jpeg)

### We are using natural variability in the climate to model atmospheric CO (a proxy for fire intensity)

![](_page_65_Picture_10.jpeg)

![](_page_65_Picture_11.jpeg)

![](_page_66_Picture_1.jpeg)

Will Daniels wsdaniels.github.io wdaniels@mines.edu

See manuscript on EarthArXiv for details on research

![](_page_66_Picture_4.jpeg)

See ISLR for details on stat learning methods

An Introduction to Statistical Learning

vith Applications in F

![](_page_66_Picture_10.jpeg)