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Motivation

Certain Southern Hemisphere regions 
experience extreme carbon monoxide (CO) 
anomalies as a result of biomass burning. October 2015

Palangkaraya,
Indonesia

January 2020

Canberra, 
Australia
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Motivation
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Our goals: 
1. Predict CO at useful lead times
2. Build interpretable models for scientific conclusions

Certain Southern Hemisphere regions 
experience extreme carbon monoxide (CO) 
anomalies as a result of biomass burning. October 2015

Palangkaraya,
Indonesia

January 2020

Canberra, 
Australia
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Response variable: carbon monoxide
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Use multiple linear regression to model atmospheric CO.

CO aggregated within the MSEA biomass burning region via spatial and temporal averages.
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Response variable: carbon monoxide
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Response variable: Deseasonalized, week-averaged CO anomalies at time t
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Covariates: climate mode indices
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Climate mode indices are metrics that describe aperiodic variability in climate

Nino 3.4 (NINO)

Dipole Mode Index (DMI)

Tropical South Atlantic (TSA)

Antarctic Oscillation (SAM)

Outgoing Longwave Radiation
(OLR)
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Covariates: climate mode indices
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Covariates: Week-averaged climate mode indices lagged at time t - 𝜏
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Statistical model
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We use lagged multiple linear regression model with first order interactions and squared terms

𝐶𝑂(𝑡) = 𝜇 + ∑
!
𝑎!𝜒!(𝑡 − 𝜏!) + ∑

",$
𝑏"$𝜒"(𝑡 − 𝜏")𝜒$(𝑡 − 𝜏$) + ∑

%
𝑐%𝜒%(𝑡 − 𝜏%)& + 𝜖(𝑡)

Main effects Interaction terms Squared terms

𝐶𝑂 𝑡 - CO anomaly in a given response region at time t
𝜇 - constant mean displacement
𝜒 - climate indices
𝜏 - lag value for each index in weeks

𝜖(𝑡) - error term
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Regularization framework for variable and lag selection
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We consider lags between 1 and 52 weeks for each index
• Results in far more covariates than observations
• Regularization well suited for this regime 
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Regularization framework for variable and lag selection
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MCP

We consider lags between 1 and 52 weeks for each index
• Results in far more covariates than observations
• Regularization well suited for this regime

We use the minimax concave penalty (MCP)

where
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Regularization framework for variable and lag selection
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Regularization→ 𝜆
MCP→ 𝜂
EBIC → 𝛾

Parameter summary

𝜂1 𝜂2 𝜂3 …

𝜆1 Model1,1 Model1,2 Model1,3

𝜆2 Model2,1 Model2,2 Model2,3

𝜆3 Model3,1 Model3,2 Model3,3

…

Pick best model using the Extended 
Bayesian Information Criterion (EBIC)
• Balances model fit and complexity
• Control penalty with free parameter 𝛾 ∈ 0,1
• 𝛾 → 1 results in smaller models
• 𝛾 → 0 results larger models
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Interpretable models lead to scientific conclusions
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𝛾 = 1
Smallest model highlights important climate-chemistry 
connections:
1. NINO has strong influence on CO at a four week lead time
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Interpretable models lead to scientific conclusions

14

𝛾 = 1
Smallest model highlights important climate-chemistry 
connections:
1. NINO has strong influence on CO at a four week lead time
2. Effect of DMI depends on length of lag



William Daniels, wdaniels@mines.eduIAWF Fire and Climate 2022

Interpretable models lead to scientific conclusions
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𝛾 = 1
Smallest model highlights important climate-chemistry 
connections:
1. NINO has strong influence on CO at a four week lead time
2. Effect of DMI depends on length of lag
3. NINO interactions suggest that NINO amplifies effect of other indices
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Model has good predictive skill at useful lead time
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𝛾 = 0 OLR helps capture the most extreme CO anomalies
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Model has good predictive skill at useful lead time
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R2 = 0.68

R2 = 0.70
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Conclusions
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We are using natural variability in the climate to model atmospheric CO (a proxy for fire intensity)

Interpretable models Good predictive skill
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Thank you! Questions?
See manuscript on EarthArXiv for details:


