

COLORADOSCHOOLOF MINES

Interpretable Model Captures Complex Relationship between **Climate Variability and Fire Season Intensity** in Maritime Southeast Asia

William Daniels¹, R. R. Buchholz², H. M. Worden², F. Ahamad³, D. M. Hammerling¹

¹Colorado School of Mines, Golden, CO, USA ²National Center for Atmospheric Research, Boulder, CO, USA ³AQ Expert Solutions, Jalan Dato Muda Linggi, Negeri Sembilan, Malaysia

IAWF Fire and Climate 2022 wdaniels@mines.edu May 26, 2022

A great team!

Dr. Rebecca Buchholz

Dr. Helen Worden

Dr. Fatimah Ahamad

Dr. Dorit Hammerling

Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result of biomass burning.

October 2015 Palangkaraya, Indonesia

January 2020

Canberra, Australia

Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result of biomass burning.

Our goals:

- 1. Predict CO at useful lead times
- 2. Build interpretable models for scientific conclusions

October 2015 Palangkaraya, Indonesia

William Daniels, wdaniels@mines.edu

January 2020

Response variable: carbon monoxide

Use multiple linear regression to model atmospheric CO.

Mean carbon monoxide [ppb]

CO aggregated within the MSEA biomass burning region via spatial and temporal averages.

Response variable: carbon monoxide

Response variable: Deseasonalized, week-averaged CO anomalies at time t

Covariates: climate mode indices

Climate mode indices are metrics that describe aperiodic variability in climate

IAWF Fire and Climate 2022

William Daniels, wdaniels@mines.edu

Nino 3.4 (NINO)

Dipole Mode Index (DMI)

Tropical South Atlantic (TSA)

Antarctic Oscillation (SAM)

Outgoing Longwave Radiation (OLR)

Covariates: Week-averaged climate mode indices lagged at time t - au

Carbon monoxide standard deviation [ppb]

We use lagged multiple linear regression model with first order interactions and squared terms

$$CO(t) = \mu + \sum_{k} a_{k} \chi_{k}(t - \tau_{k}) + \sum_{i,j} b_{ij} \chi_{i}(t - \tau_{i}) \chi_{j}(t - \tau_{j}) + \sum_{l} c_{l} \chi_{l}(t - \tau_{l})^{2} + \epsilon (t - \tau_{l})^{2}$$
Main effects
Interaction terms
Squared terms

CO(t) - CO anomaly in a given response region at time t

- μ constant mean displacement
- χ climate indices
- τ lag value for each index in weeks $\epsilon(t)$ - error term

William Daniels, wdaniels@mines.edu

Regularization framework for variable and lag selection

We consider lags between 1 and 52 weeks for each index

- Results in far more covariates than observations
- Regularization well suited for this regime

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{q} \beta_j X_{ij} \right)^2 + p(\beta)$$

Regularization framework for variable and lag selection

We consider lags between 1 and 52 weeks for each index

- Results in far more covariates than observations
- Regularization well suited for this regime

$$\hat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{q} \beta_j X_{ij} \right)^2 + p(\beta)$$

We use the minimax concave penalty (MCP)

MCP
$$p(\beta) = \sum_{j=1}^{q} f(\beta_j)$$
 where $f(\beta_j) = \begin{cases} \lambda |\beta_j| - \frac{\beta_j^2}{2\eta} & \text{if } |\beta_j| \le \eta \lambda \\ \frac{\eta \lambda^2}{2} & \text{otherwise.} \end{cases}$

William Daniels, wdaniels@mines.edu

Regularization framework for variable and lag selection

	η_1	η_2	η_3
λ_1	Model _{1,1}	Model _{1,2}	Model _{1,3}
λ_2	Model _{2,1}	Model _{2,2}	Model _{2,3}
λ_3	Model _{3,1}	Model _{3,2}	Model _{3,3}
• • •			

Pick best model using the Extended **Bayesian Information Criterion (EBIC)**

- Balances model fit and complexity
- Control penalty with free parameter $\gamma \in [0,1]$
- $\gamma \rightarrow 1$ results in smaller models
- $\gamma \to 0$ results larger models

Interpretable models lead to scientific conclusions

$\gamma = 1$

Est	(Std.	Error)
(Intercept)	-1.6	(0.78)
nino_4	7.2	(0.78)
dmi_4	7.2	(0.93)
dmi_12	-8.0	(0.87)
aao_51	-3.1	(0.67)
olr_1	3.5	(0.79)
I(nino_4^2)	2.5	(0.54)
nino_4:olr_1	3.5	(0.76)
nino_4:dmi_12	-6.5	(0.77)
aao_51:olr_1	-2.3	(0.67)

Adjusted R-squared: 0.60 connections:

Smallest model highlights important climate-chemistry

1. NINO has strong influence on CO at a four week lead time

William Daniels, wdaniels@mines.edu

Interpretable models lead to scientific conclusions

$\gamma = 1$

Est	(Std.	Error)
(Intercept)	-1.6	(0.78)
nino_4	7.2	(0.78)
dmi_4	7.2	(0.93)
dmi_12	-8.0	(0.87)
aao_51	-3.1	(0.67)
olr_1	3.5	(0.79)
I(nino_4^2)	2.5	(0.54)
nino_4:olr_1	3.5	(0.76)
nino_4:dmi_12	-6.5	(0.77)
aao_51:olr_1	-2.3	(0.67)
Additionate and Descar		0.00
Adjusted R-Sq	uared	0.60

connections:

Smallest model highlights important climate-chemistry

1. NINO has strong influence on CO at a four week lead time 2. Effect of DMI depends on length of lag

$\gamma = 1$

Est	(Std.	Error)
(Intercept)	-1.6	(0.78)
nino_4	7.2	(0.78)
dmi_4	7.2	(0.93)
dmi_12	-8.0	(0.87)
aao_51	-3.1	(0.67)
olr_1	3.5	(0.79)
I(nino_4^2)	2.5	(0.54)
nino_4:olr_1	3.5	(0.76)
nino_4:dmi_12	-6.5	(0.77)
aao_51:olr_1	-2.3	(0.67)

Adjusted R-squared: 0.60

connections:

- 1. NINO has strong influence on CO at a four week lead time
- 2. Effect of DMI depends on length of lag
- 3. NINO interactions suggest that NINO amplifies effect of other indices

Smallest model highlights important climate-chemistry

15

Model has good predictive skill at useful lead time

$\gamma =$	= ()	
Est (Intercept) nino_4 dmi_1 dmi_12 dmi_43 tsa_3 tsa_3 aao_2 aao_2 aao_38 aao_51 olr_1 olr_13 nino_4:olr_1 nino_4:olr_1 nino_4:dmi_1 dmi_1:dmi_12 nino_4:aao_51	(Std. 0.3 7.6 5.7 -6.1 1.8 -2.2 -3.6 -2.2 -3.6 2.3 3.4 3.2 3.4 3.2 3.2 3.2 -4.5 -4.5	Error) (0.70) (0.83) (0.79) (0.75) (0.65) (0.64) (0.64) (0.64) (0.64) (0.64) (0.64) (0.64) (0.74) (0.74) (0.71) (0.71) (0.66) (0.81) (0.56) (0.77)
tsa_3:olr_1	-2.3	(0.63)
~~	2.1	(0.00)

-1.8(0.70)

OLR helps capture the most extreme CO anomalies

- No OLR Model Predictions
- OLR Model Predictions

Adjusted R²

No	
OLR Model	OLR Mod
0.66	0.68

nino_4:aao_2

Adjusted R-squared: 0.68

Model has good predictive skill at useful lead time

William Daniels, wdaniels@mines.edu

17

We are using natural variability in the climate to model atmospheric CO (a proxy for fire intensity)

Interpretable models

Good predictive skill

MSEA CO anomaly in 2015 [ppb]

William Daniels, wdaniels@mines.edu

18

Thank you! Questions?

See manuscript on EarthArXiv for details:

William Daniels wdaniels@mines.edu **IAWF Fire and Climate 2022**

AR COLORADO SCHOOL OF MINES

