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Motivation

Big Picture: We are using natural variability in the climate to model                  
                      atmospheric carbon monoxide (CO) concentrations.

1) Fires are the primary source of CO variability in  
   the Southern Hemisphere

2) CO can be used as a proxy for fires

3) Predictive CO models can:

● Help countries prepare for large burn events

● Help explain the relationship between climate    
 and atmospheric chemistry

Fires Put a Carbon Monoxide Cloud over Indonesia. NASA, 1 Sept. 2015, earthobservatory.nasa.gov/images/87119/fires-put-a-carbon-monoxide-cloud-over-indonesia.

Why model CO?
2015 Indonesia Fires  |  CO Data from MOPITT
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Fire Preparation

2019 - 2020 Australia Fires

Canberra, Australia
January 2020

ABC News (Australian Broadcasting Company)

Richardson, Holly. “Pharmacies Run out of Face Masks amid Bushfires and Coronavirus Fears.” ABC News, 24 Jan. 2020, www.abc.net.au/news/2020-01-24/face-mask-shortage-brisbane-bushfire-smoke-coronavirus-fears/11895300.
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Response Variable

●  CO measurements from MOPITT instrument on board the Terra satellite
●  CO is aggregated into two biomass burning regions
●  A separate model is created for each region, we will focus on Maritime SE Asia

Maritime 
Southeast 
Asia

Southeast 
Australia
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Response Variable

Response Variable: De-seasonalized CO anomaly at a given time, t
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Predictor Variables

● Climate indices are metrics that summarize aperiodic changes in climate  
● Burn events are related to climate through availability and dryness of fuel
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Predictor Variables

● Outgoing longwave radiation (OLR) is energy emitted to space through infrared radiation
● Low OLR values indicate presence of cloud cover
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Predictor Variables

Predictor Variables: Climate indices and OLR anomalies, lagged at time t – τ.
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Statistical Model

We use a lagged multiple linear regression model with first order interactions

CO(t) - CO anomaly in a given response region, at time t

          -  constant mean displacement

          - climate indices & OLR anomalies

          - lag value for each index in months

Main Effects Interaction Terms
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Statistical Model

We use a lagged multiple linear regression model with first order interactions

Main Effects Interaction Terms

How do we perform variable selection?

How do we pick lag values? 
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Variable and Lag Selection via Regularization

We use regularization for both variable and lag selection. The program:

1) Create design matrix
- Include all covariates at lags 1-52 nino_1,  nino_2,  … ,  nino_52

dmi_1,   dmi_2,   … ,  dmi_52
tsa_1,    tsa_2,    … ,  tsa_52
aao_1,   aao_2,   … ,  aao_52
olr_1,     olr_2,     … ,  olr_52
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LASSO Objective Function

Variable and Lag Selection via Regularization

We use regularization for both variable and lag selection. The program:

1) Create design matrix
- Include all covariates at lags 1-52

2) Set up the regularization
- Start with the LASSO

Controls 
model fit

Controls 
model 

complexity
or size
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Variable and Lag Selection via Regularization

We use regularization for both variable and lag selection. The program:

Patrick Breheny. Jian Huang. "Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection." The Annals of Applied Statistics, 5(1) 232-253 March 2011.

1) Create design matrix
- Include all covariates at lags 1-52

2) Set up the regularization
- Start with the LASSO
- Introduce a more flexible penalty, the minimax        

          concave penalty (MCP)

LASSO Objective Function
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Variable and Lag Selection via Regularization

We use regularization for both variable and lag selection. The program:

Patrick Breheny. Jian Huang. "Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection." The Annals of Applied Statistics, 5(1) 232-253 March 2011.

1) Create design matrix
- Include all covariates at lags 1-52

2) Set up the regularization
- Start with the LASSO
- Introduce a more flexible penalty, the minimax        

          concave penalty (MCP)
- Introduce a more flexible tuning parameter, the      

          extended Bayesian information criterion (EBIC)

LASSO Objective Function

EBIC = BIC,
Larger 
Models

Smaller 
Models

is used to select 
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Variable and Lag Selection via Regularization

We use regularization for both variable and lag selection. The program:

Ning Hao, Yang Feng & Hao Helen Zhang (2018) Model Selection for High-Dimensional Quadratic Regression via Regularization, Journal of the American Statistical Association, 113:522, 615-625
Patrick Breheny. Jian Huang. "Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection." The Annals of Applied Statistics, 5(1) 232-253 March 2011.

LASSO Objective Function

LASSO → 
MCP     → 
EBIC     → 

1) Create design matrix
- Include all covariates at lags 1-52

2) Set up the regularization
- Start with the LASSO
- Introduce a more flexible penalty, the minimax        

          concave penalty (MCP)
- Introduce a more flexible tuning parameter, the      

          extended Bayesian information criterion (EBIC)

3) Vary over free parameters
- Perform grid search over               and 

       - At each parameter combination, use RAMP            
         algorithm to compute solution path

- Results in a “best model” for each 
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Best Models for Maritime SE Asia

Best models optimized over            and      for a logarithmic sequence of   

            Est (Std. Error)
(Intercept)       0.3 (0.70)  
nino_4            7.6 (0.83)
dmi_1             5.7 (0.79)
dmi_12           -6.1 (0.75)
dmi_43            1.8 (0.65)
tsa_3            -2.2 (0.64)
aao_2            -3.6 (0.61)
aao_38           -2.2 (0.64)
aao_51           -1.6 (0.63)
olr_1             2.3 (0.74)
olr_13            3.4 (0.71)
nino_4:olr_1      3.2 (0.66)
nino_4:dmi_1      3.2 (0.81)
dmi_1:dmi_12     -4.5 (0.56)
nino_4:aao_51    -4.2 (0.77)
tsa_3:olr_1      -2.3 (0.63)
aao_2:olr_13     -2.1 (0.68)
nino_4:aao_2     -1.8 (0.70)

Standard error: 10.22
Multiple R-squared:  0.70
Adjusted R-squared:  0.68 
DF: 17

           Est (Std. Error)
(Intercept)      0.1 (0.72)
nino_4           7.3 (0.85)
dmi_1            6.1 (0.86)
dmi_12          -7.5 (0.78)
dmi_37           2.3 (0.69)
aao_2           -2.7 (0.62)
aao_51          -2.3 (0.65)
olr_1            2.7 (0.74)
olr_12           2.3 (0.75)
olr_20           1.6 (0.70)
nino_4:olr_1     2.8 (0.70)
nino_4:dmi_12   -2.7 (0.78)
aao_51:olr_1    -2.8 (0.64)
nino_4:dmi_37   -4.8 (0.66)
dmi_12:dmi_37    2.1 (0.73)
dmi_1:dmi_12    -2.2 (0.65)

Standard error: 10.38 
Multiple R-squared:  0.68
Adjusted R-squared:  0.67 
DF: 15

           Est (Std. Error)
(Intercept)    -0.38 (0.68)
nino_4          7.85 (0.85)
dmi_1           4.11 (0.78)
dmi_12         -6.50 (0.77)
dmi_37          2.09 (0.66)
tsa_13         -1.01 (0.68)
aao_2          -2.32 (0.64)
aao_51         -2.01 (0.65)
olr_1           2.80 (0.76)
olr_12          2.58 (0.74)
nino_4:olr_1    3.21 (0.71)
nino_4:dmi_12  -4.19 (0.69)
aao_51:olr_1   -2.74 (0.67)
nino_4:dmi_37  -4.28 (0.66)

Standard error: 10.67
Multiple R-squared:  0.66
Adjusted R-squared:  0.65 
DF: 13

         Est (Std. Error)
(Intercept)   -1.6 (0.78)
nino_4         7.2 (0.78)
dmi_4          7.2 (0.93)
dmi_12        -8.0 (0.87)
aao_51        -3.1 (0.67)
olr_1          3.5 (0.79)
I(nino_4^2)    2.5 (0.54)
nino_4:olr_1   3.5 (0.76)
nino_4:dmi_12 -6.5 (0.77)
aao_51:olr_1  -2.3 (0.67)

Standard error: 11.42
Multiple R-squared:  0.61
Adjusted R-squared:  0.60
DF: 9
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Maritime SE Asia Model Predictions
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Conclusion & Future Work

We are using variability in the climate to predict atmospheric CO, a proxy for fire season intensity

● Identifying the optimally performing models at various complexities allows us to identify the most 
significant predictors and lags.

● Model performs well and is able to capture peaks in Maritime SE Asia.

Take-Aways:
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Conclusion & Future Work

We are using variability in the climate to predict atmospheric CO, a proxy for fire season intensity

● Identifying the optimally performing models at various complexities allows us to identify the most 
significant predictors and lags.

● Model performs well and is able to capture peaks in Maritime SE Asia.

“Cheyenne.” Cheyenne | Computational Information Systems Laboratory, www2.cisl.ucar.edu/resources/computational-systems/cheyenne

Future Work:
● Increase minimum lag 
limit to see how far in 
advance we can make 
good predictions

Take-Aways:



Thank you! Questions?

William Daniels
wdaniels@mines.edu

February 19, 2021
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