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ABSTRACT

We present two statistical modeling efforts that seek to address pressing environmental issues through

the use of remotely sensed data. The first study is motivated by the extreme fire seasons now commonly

experienced across the globe (e.g. the 2015 Indonesian forest fires and the 2019/2020 Australian bush

fires). We develop interpretable models for remotely sensed carbon monoxide, a proxy for fire intensity in

the Southern Hemisphere, fit using a flexible regularization framework. These models are parsimonious by

design, allowing for scientific insight into the primary climate drivers of fire season intensity in different

regions. The models have good predictive skill at considerable lead times, making them a useful tool for

predicting upcoming fire season intensity. The second study is motivated by a growing dependence on

natural gas for energy in the United States. Methane (the primary component of natural gas) burns

cleaner than coal and oil but is a potent greenhouse gas. Therefore, limiting emissions during natural gas

production is essential if it is to be considered a cleaner alternative to other fossil fuels. With the goal of

localizing small-scale emissions, we develop a hierarchical spatial model for estimating methane

concentrations on a fine grid given coarsely pixelated satellite observations. We apply our model to a

satellite overpass of the Denver-Julesburg (DJ) Basin (located in northeast Colorado) to demonstrate its

effectiveness. We use conditional simulation for uncertainty quantification and inferences related to

emissions monitoring.
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CHAPTER 1

INTRODUCTION

Satellite remote sensing has produced a wealth of data with wide ranging environmental applications,

and we present two specific examples in this thesis. Before discussing these studies, however, we provide a

brief overview of satellite remote sensing, the types of data it produces, and some challenges associated

with using these data. We believe that this will provide useful context for the two specific applications

presented in Chapters 2 and 3.

Satellite remote sensing (or just “remote sensing” for the remainder of this text) refers to the use of

satellite-based instruments to gather information about an object or phenomenon. Specifically, we focus on

remote sensing of Earth. These remote sensing instruments collect data by measuring the intensity of

electromagnetic radiation reflected by the Earth’s surface. Passive sensors detect the reflection of naturally

produced light (e.g. sunlight), while active sensors detect the reflection of an artificially produced light

(e.g. a laser). Hyperspectral imaging is one type of remote sensing that is often used to measure the

concentration of trace gasses in the atmosphere. As the reflected light interacts with these gasses, such as

carbon monoxide or methane, the spectra of the light are altered before being recorded by the

satellite-based spectrometers. Algorithms are then able to analyze these spectra and determine the

concentrations of the gasses based on their known absorption properties. The result of this process is the

“retrieval.” We direct the interested reader to Levelt et al. (2006), Veefkind et al. (2012), and Hu et al.

(2016) as a starting point for more information.

Remotely sensed data has a number of features related to the satellite platform from which it is

measured. The most obvious is simply the location of the measurements. Unlike ground-based sensors that

are located at fixed points in space, such as the 23 instruments in the Total Carbon Column Observing

Network (TCCON) (Wunch et al., 2011), satellite-based sensors continuously orbit the planet. The result

is that each retrieval observes a slightly different portion of the Earth’s surface. An obvious benefit to this

type of measurement is that a single satellite-based instrument can monitor the entire globe. However, it

also complicates the analysis of these data. First, it introduces two extra dimensions in addition to time

(latitude and longitude). Second, it makes it unlikely for two observations to occur at exactly the same

point in space. As a result, it is often necessary to spatially aggregate observations that occur close

together when studying a specific region.

A related feature of remotely sensed data is the resolution of the observations. Satellite instruments

gather data by repeatedly imaging stretches of the Earth’s surface for short durations of time. This results
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in a sequence of rectangular observations, with the across-track length defined by the viewing angle of the

instrument and the along-track length defined by the time used to create the image. The across-track

dimension is broken up according to the number of pixels in the imaging system. The result of this

measurement strategy is a number of observation “footprints,” where the footprints are the projection of

the imaging pixels onto the surface of the Earth. The trace-gas observation associated with each footprint

is a function of the gas within the column extending from the boundary of that footprint. The footprints

exhibit different shapes depending on their relative position to the nadir (straight down location) of the

satellite. Specifically, as the rectangular observations are projected onto the curved surface of the Earth,

the footprints towards the ends of the rectangle get stretched out, while the pixels closer to nadir are less

distorted. See Veefkind et al. (2012) for further details.

While these footprints can be approximated by their center point, the observation is a function of the

target gas within the volume of the column extending from the footprint. These footprints can be largely

ignored if aggregating data over large spatial regions but are important to consider when analyzing small

regions closer in scale to the size of the footprints.

Figure 1.1 Example overpass of the TROPOMI satellite instrument to demonstrate the pixelated nature of
the observations. Along-track and across-track directions are shown. Each box within the grid shows a
footprint corresponding to an observation. Color represents the time of measurement, with cooler colors
occurring before the hotter colors.

2



The satellite overpass of Colorado shown in Figure 1.1 is an example of this pixelated measurement

property. These observations are from the TROPOMI instrument onboard the Copernicus Sentinel-5

Precursor satellite (discussed further in Chapter 3). Each box within the colored grid shows a footprint

corresponding to an observation. Here color represents the time of measurement, with cooler colors

occurring before the hotter colors. The along-track direction is shown with a red arrow, and the

across-track direction is shown with a blue arrow. Note that these footprints are very elongated because

they are located at the end of the two dimensional strip described above.

The final feature that we will discuss is the time of measurement. Satellites can be placed in different

orbits around the Earth, with each resulting in a different path traced along the Earth’s surface as the

satellite orbits. Satellites are often placed in a sun-synchronous orbit when global coverage is desired,

which results in measurements occurring at the same local mean solar time at every point across the globe.

In other words, the satellites typically observe each point on the globe at around the same local time each

day. This is important for consistency, as atmospheric gasses often have diurnal (i.e. daily) cycles that

affect their concentrations.

Having broadly discussed these properties of satellite remote sensing, we now briefly introduce the two

studies presented in Chapters 2 and 3. Both studies involve statistical models that seek to address pressing

environmental issues through the use of satellite data. The goals of each study can be summarized as

follows:

1. Explore the relationship between climate variability and fire season intensity. To this end, we develop

interpretable models for remotely sensed carbon monoxide (a proxy for fire intensity in the Southern

Hemisphere).

2. Explore the capabilities of remotely sensed methane as a tool for localizing small scale emissions

(both fugitive and operational) from oil and gas production. For this application, we develop a

spatial model that predicts methane concentrations on a fine grid given the coarsely pixelated

satellite observations.

For the first study, we develop a lagged, multiple linear regression model that is fit with a flexible

regularization framework. We average carbon monoxide observations onto a regional scale, meaning that

we can essentially ignore the footprint of each observation. For the second study, we develop a spatial

model fit via maximum likelihood. We make predictions at a resolution finer than the satellite footprints,

and therefore we take into consideration the shape of the footprints when fitting the model. We leave

further introduction to these projects for their respective chapters, where we discuss in detail the current

literature, our research goals, and the methods we have developed.

3



The rest of this document is laid out as follows. In Chapters 2 and 3, we discuss the two studies briefly

introduced above. Within each of these chapters, we discuss the current literature, our research goals, the

remotely sensed data utilized, the methods we develop, and our results. In Chapter 4, we briefly

summarize our work and make connections between the two projects.
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CHAPTER 2

INTERPRETABLE MODELS FOR THE ANALYSIS AND PREDICTION

OF FIRE SEASON INTENSITY

2.1 Introduction

There have been many devastating fire seasons in recent years across the globe. Two examples are the

2015 Indonesian forest fires and the 2019/2020 Australian bushfires. In fact, the 2015 fire season in

Indonesia was the most severe fire activity in the region since the NASA Earth Observing System satellites

came online in the early 2000s. During this two month event, thick smoke blanketed Sumatra and

Kalimantan and millions of people were exposed to hazardous air quality (Field et al., 2016). This

motivates the need for advanced predictions of fire season intensity, as they would give countries like

Indonesia time to better prepare for these extreme fire events.

The relationship between fire and climate has been extensively studied. Fire intensity and burned area

are related to the amount, type, and dryness of available fuel, all of which respond closely to water

conditions driven by climate variability (van der Werf et al., 2008). This relationship is complex and varies

across the different regions of the globe. For instance, drought conditions were found to increase fire

potential in southern Africa, but decrease fire potential in northern Africa (Andela & Van Der Werf, 2014).

Climate modes, such as the El Nino Southern Oscillation (ENSO), capture variability in the global

climate system. Studies have used these climate modes to help explain the complex relationship between

climate and fire, often using a regression modeling framework. ENSO has been found to influence fires in

North America (Shabbar et al., 2011), Maritime Southeast Asia (Fuller & Murphy, 2006; Reid et al., 2012),

the Amazon (Alencar et al., 2011), and Africa (Andela & Van Der Werf, 2014). However, studies have

found that fire behavior is often related to several distinct climate modes (Andreoli & Kayano, 2006; Chen

et al., 2016; Saji & Yamagata, 2003). In fact, Cleverly et al. (2016) finds that the interactions between the

ENSO, IOD, and AAO climate modes are particularly important for explaining drought and rainfall in

Australia, which in turn are major drivers of fire activity. This indicates that fire behavior is affected not

only by the isolated influence of multiple modes, but also by their interactions (i.e. whether or not the

modes are in phase).

In addition to identifying the influential climate modes for fire behavior in a given region, studies such

as Chen et al. (2016) and Wooster et al. (2012) identify lead times that correspond to the maximum

predictive skill of the climate modes being studied. Similarly, Shawki et al. (2017) examines how far in
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advance the 2015 fire event in Indonesia can be predicted using climate based models, finding that lead

times of up to 25 weeks can still provide useful predictions.

These fire-climate connections have been previously studied using satellite observations of fire

properties (e.g. Ceccato et al. (2010), Wooster et al. (2012), and Chen et al. (2016)). The Moderate

Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites

provide fire count data for each overpass as well as a burned area data product (Giglio et al., 2016, 2018).

However, using fire counts or burned area directly presents a number of challenges. Fire counts ignore

differences in fire size and intensity, and burned area products potentially miss small fires, underground

peat fires, and fires obscured by smoke (although significant improvements in this regard have been made

with the most recent product) (Giglio et al., 2018; Shawki et al., 2017).

One alternative is to model atmospheric carbon monoxide (CO) instead of fire counts or burned area

directly. CO is produced by incomplete combustion from biomass burning, fossil fuel use, and indirectly by

photochemistry (Buchholz et al., 2018; Holloway et al., 2000), and its link to fires is well established

(Edwards et al., 2006a). In fact, biomass burning is the primary source of atmospheric CO variability in

the Southern Hemisphere. Thus CO anomalies are a useful proxy for fire intensity (Voulgarakis et al.,

2015). Compared to the study of fire counts and burned area, less research has gone into the connection

between atmospheric CO and climate variability. Because CO variability in the Southern Hemisphere is

closely linked to biomass burning, it also responds to variability in the climate. Furthermore, modeling CO

provides information on atmospheric pollutants concurrently with information on fire intensity.

Edwards et al. (2006b) found that CO observations from the Measurement of Pollution in the

Troposphere (MOPITT) instrument is correlated with ENSO. Buchholz et al. (2018) expanded on Edwards

et al. (2006b), finding that atmospheric CO anomalies in a number of Southern Hemisphere regions are

correlated to four different climate modes (including ENSO) and that the interactions between these

climate modes is important in explaining atmospheric CO anomalies. Buchholz et al. (2018) used

month-averaged CO and climate mode data and separated lag and variable selection into two

computational steps.

We also focus on the connection between atmospheric CO and climate variability, expanding on

Buchholz et al. (2018) via the following advancements.

• We create models using week-averaged data, rather than month-averaged data, significantly

increasing predictive skill.

• We include a proxy for a fifth climate mode, the Madden-Julian Oscillation (MJO), resulting in

models that are better able to capture extreme CO anomalies in Maritime Southeast Asia.
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• We develop a more flexible model fitting framework that performs variable and lag selection

simultaneously using regularization. This allows for multiple lags of a single climate mode in the

statistical models.

• We develop a framework for assessing the stability of selected model terms. This gives weight to the

scientific interpretation of the selected model terms and ultimately improves model interpretability.

• We incorporate an option for setting the minimum and maximum lags allowed in the statistical

models, making it possible to set the desired lead time of model predictions.

With these advancements in mind, we focus on two main research goals:

1. Create interpretable models that can be used to draw scientific conclusions about the connection

between climate and atmospheric chemistry.

2. Create models with a high level of predictive skill that can be used to predict fire season intensity

reasonably far in advance.

The rest of this chapter is laid out as follows. In Sections 2.2 and 2.3, we describe the data and the

statistical model, respectively. In Section 2.4, we discuss the model fitting framework we have developed

for this application. In Sections 2.5 and 2.6 we discuss how we use this modeling framework to address the

two research goals listed above. Finally, we summarize this work in Section 2.7.

2.2 Observational Data Sets

2.2.1 Response Variable

For the response, we use carbon monoxide column-averaged volume mixing ratios (referred to as simply

CO) from the MOPITT instrument onboard the Terra satellite. The units of column-averaged volume

mixing ratios are parts per billion by volume (ppb). Using column-averaged volume mixing ratios instead

of total column CO removes dependence on surface topography and pressure changes.

MOPITT has complete Earth coverage about every three days with a footprint size of 22 × 22 km. We

use the latest retrieval algorithm (V8), which has been validated in Deeter et al. (2019). To reduce

systematic and random error, we select daytime, land-only retrievals from the thermal infrared (TIR)

product. Daytime retrievals have a higher sensitivity to CO than nighttime retrievals due to higher thermal

contrast during the day. Land-only retrievals have less error than water-only retrievals because MOPITT is

more sensitive to CO over land scenes. Finally, the TIR has less random error than the near-infrared or

multispectral products. See Buchholz et al. (2018), Deeter et al. (2007), and Deeter et al. (2014) for details.
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Figure 2.1 (a) Average CO during 2015 as measured by MOPITT with the Maritime Southeast Asia
(MSEA) response region overlaid in black. (b) CO standard deviation during the same time period with
the spatial range of influence of the four climate mode indices overlaid in black.

We aggregate CO observations into a single biomass burning region in the Southern Hemisphere. We

focus on Maritime Southeast Asia (MSEA) in this paper, but it should be noted that this methodology

could be applied to other regions as well (such as Southeast Australia - the region that experienced severe

bushfires in 2019/2020). We focus on MSEA because it is a biomass burning region that experiences

significant CO anomalies (ie. CO concentrations well above average). Figure 2.1(a) shows the MSEA

response region overlaid on the average CO during 2015.

We create a weekly time series for the MSEA region by averaging all of the observations falling within

the region boundaries (see Figure 2.1(a)) for each week. This time series contains 18 years of data, from

2001 to 2019. We remove the annual seasonal cycle from the weekly time series so that our models are

better able to capture the anomalous CO observations corresponding to large burn events. We compute the

seasonal cycle by taking an average over the 18 years of data for each week. This climatological average is

then subtracted from the weekly time series to create CO anomalies.

Finally, since we are interested in using CO as a proxy for fires, we only model the anomalies during fire

season in the Southern Hemisphere, defined here as September through December. This time range was

selected based on results from Buchholz et al. (2018) showing that these months captured most of the

atmospheric CO variability in the MSEA region. The CO anomalies during fire season are used as the
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response variable in our models. Figure 2.2 shows the weekly CO observations, climatological average, and

resulting anomalies for the MSEA region. Note that data for the entire year is plotted, even though we

only model September through December.

Figure 2.2 (a) Weekly CO observations for the MSEA response region and the climatological average
created by averaging each week over the 18 year time series. (b) Anomalies resulting from the difference
between the weekly observations and the climatological average.

2.2.2 Predictor Variables

We are interested in connections between atmospheric CO and climate variability. Climate modes are

large scale patterns that capture variation in temperature, wind, or other aspects of climate over certain

spatial regions. A well known example is the El Nino Southern Oscillation (ENSO), which captures

quasi-periodic variability in sea surface temperature and wind in the Pacific Ocean (Neelin et al., 1998;

Trenberth, 2013). Climate indices are metrics that quantify the state of climate modes. Multiple climate

indices exist for each climate mode. For instance, the Nino 1.2, Nino 3.4, and Southern Oscillation Index

(SOI) are all indices that describe the state of ENSO (NOAA OOPC, 2021).

Here we consider four climate modes that represent variability in the major ocean basins of the

Southern Hemisphere and tropics. The El Nino Southern Oscillation (ENSO) represents the Pacific Ocean,

the Indian Ocean Dipole (IOD) represents the Indian Ocean, the Tropical South Atlantic (TSA) represents

the southern Atlantic Ocean, and the Antarctic Oscillation (AAO) represents the Southern Ocean. These

climate modes were selected to match the analysis in Buchholz et al. (2018).

For predictor variables, we select a single climate mode index to represent each of these climate modes.

To represent the ENSO, we use the Nino 3.4 index defined in Bamston et al. (1997). To represent the TSA,

we use the Tropical South Atlantic Index defined in Enfield et al. (1999). These two indices are calculated
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using sea surface temperature (SST) anomalies in the regions shown in Figure 2.1(b) labeled as Nino 3.4

and TSA, respectively. To represent the IOD, we use the Dipole Mode Index (DMI) defined in Saji et al.

(1999). This index is calculated from SST gradients between the two regions shown in Figure 2.1(b)

labeled as DMI. To represent the AAO, we use the Southern Annular Model (SAM) index defined in

Thompson & Wallace (2000). This index captures Antarctic atmospheric circulation described by the

poleward shift of westerly winds. This index is calculated by projecting observational height anomalies at

700 hPa and poleward of -20 degrees latitude onto the leading empirical orthogonal function of the

National Centers for Environmental Prediction and National Center for Atmospheric Research reanalysis

(Kalnay et al., 1996; Kistler et al., 2001). The spatial extent of this index is shown in Figure 2.1 via the

arrows labeled SAM. We expect a relationship between these indices and CO, as each index affects regional

climate (e.g. rainfall), which in turn affects drought, fire, and ultimately CO loading.

In addition to these four indices, we also want to include variability captured by the Madden-Julian

Oscillation (MJO) climate mode. This climate mode broadly describes the eastward propagation of a

convection cell that forms off the east cost of Africa and dissipates in the Pacific Ocean (Madden & Julian,

1972). The MJO is the dominant mode of intraseasonal variability in the tropics (Madden & Julian, 1994)

and has been shown to increase or decrease the probability of extreme rain events by over 20% in the

MSEA region depending on its phase (Xavier et al., 2014). However, unlike the other climate modes

included in this study, the most common MJO index is described by the two primary empirical orthogonal

functions (EOFs) resulting from a number of climate variables (Wheeler & Hendon, 2004). Included in the

EOF analysis is outgoing longwave radiation (OLR), a metric that describes how much energy is leaving

the atmosphere. Low OLR values indicate the presence of clouds, and hence a higher likelihood of rainfall.

To capture the variability described by the MJO in our models, we use OLR anomalies instead of the

two primary EOFs from Wheeler & Hendon (2004). This is done to better accommodate a linear regression

framework. The phase of the MJO depends on both EOFs simultaneously, which could be included in a

linear regression model by using a main term for both EOFs and their interaction. However, this

introduces three covariates (and hence three coefficient estimates) to capture a single physical phenomenon.

This makes it harder to correctly model the contribution of the MJO and hinders model interpretation.

Using OLR anomalies in the MSEA region as a proxy for the MJO provides a single metric that captures

the presence of the convection cell described by the MJO. We believe and have confirmed through

preliminary testing that this proxy, while losing some of the information contained in the two MJO EOFs,

is better suited for a regression analysis. OLR values are aggregated over the same spatial region that

defines the MSEA response region shown in Figure 2.1, and anomalies are created in the same manner as

the CO anomalies described in the previous section. We consider the inclusion of the OLR as a proxy for
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the MJO a major advancement over the models presented in Buchholz et al. (2018), and we demonstrate

the benefit of including the OLR proxy in Section 2.6.1.

Figure 2.3 Time series of the five climate mode indices used as predictor variables in this study. Note that
OLR is used as a proxy index for the MJO.

Figure 2.3 shows the weekly time series for each climate mode index used as a predictor variable in this

study. Some of the indices have both high and low frequency components. This is most obvious in the

SAM and OLR. We believe that the high frequency component of the OLR captures oscillatory movement

of the convection cell described by the MJO. The movement of this convection cell has a period of 30 to 90

days, which is closely aligned with the period of the high frequency component of the OLR.

The climate mode index data used in this study are publicly available. The source of each index (or

proxy index in the case of the MJO) is listed in Table 2.1.

Table 2.1 Climate mode indices used in this study with links to their sources. Note that we use OLR as a
proxy index for the MJO.

Climate Mode Associated Index Source
ENSO Nino 3.4 NOAA OOPC (2021)
IOD Dipole Mode Index (DMI) NOAA OOPC (2021)
TSA Tropical South Atlantic (TSA) NOAA OOPC (2021)
AAO Southern Annular Mode (SAM) NOAA CPC (2021)
MJO Outgoing Longwave Radiation (OLR) NOAA PSL (2021)
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2.3 Multiple Linear Regression Model

We use lagged multiple linear regression to model the relationship between CO anomalies and climate

mode indices. We include first order interaction terms to capture the interconnected nature of the global

climate system. Buchholz et al. (2018) found that these interaction terms were highly significant in

explaining CO variability. We also include squared terms to capture potential non-linear relationships

between the mean CO response and the climate mode indices. These terms are not included in the models

in Buchholz et al. (2018), and we believe that they allow the models to capture more complex

relationships. For a given response region, we assume that

CO(t) = µ+
∑
k

ak · χk(t− τk) +
∑
i,j

bij · χi(t− τi) · χj(t− τj) +
∑
l

cl · χl(t− τl)2 + ε, (2.1)

where CO(t) is the CO anomaly at time t, µ is a constant mean displacement, ak, bij , and cl are

coefficients, χ are the climate indices, τ is the lag value for each index in months, ε is a random error

component, and k,i, and j iterate over the number of climate modes used in the analysis. We consider lags

between one and 52 weeks for each index. We do not consider zero week lags so that our models can be

used for prediction.

We do not expect the high frequency variability in the climate mode indices to have a large effect on

the amount, type, and dryness of available fuel far into the future. This is because short lasting anomalies

(either positive or negative), while potentially having an important short term impact, do not last long

enough to drastically alter large scale fuel reserves. Therefore, we want covariates with longer lags to

capture progressively lower frequency components of the climate indices.

To accomplish this, we apply more smoothing to the climate mode indices as the length of their lag in

the statistical model increases. Specifically, we employ the following smoothing strategy. We do not

smooth the indices for lags below four weeks, as we want to capture as much high frequency signal as

possible from these very short term relationships. For lags between four and 52 weeks, we use a Gaussian

kernel to smooth the indices, with the bandwidth value increasing every four weeks. To select bandwidth

values, we first found the bandwidth that seemed to best capture the long term trend in the climate

indices. This was then set as the maximum bandwidth and a continuous sequence of bandwidth values was

created between no smoothing and this maximum value.

Figure 2.4 shows every other level of smoothing applied to the climate indices over two years of data.

The black curve is the original weekly climate index time series, which is used for lags one through three.

The colored curves show every other level of smoothing up to the maximum smoothing applied to lags of

one year. Note that the vertical axis has been omitted from Figure 2.4 for visual clarity since its purpose is
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solely to show the relative levels of smoothing applied to each climate index.

Figure 2.4 Black curve shows the original climate index data, which is used for lags of one through three
weeks. Colored curves show every other level of smoothing applied to the climate index data, which is used
for lags of four through 52 weeks. Vertical axis has been omitted for visual clarity.

2.4 Variable Selection and Model Fitting

We consider 52 lags of each climate mode index, as well as quadratic terms and pairwise interactions.

This results in far more covariates than observations. We want to perform some form of variable and lag

selection. Buchholz et al. (2018) broke this process up into two parts. First, they iterated through all

possible lag combinations. At a given combination of lag values (called a “lag set”), each index was fixed at

a single lag value. Stepwise selection was then used for variable selection. This resulted in a list of

optimally performing models (one model for each lag set). From this list, a single model was selected based

on adjusted R2 to represent the climate-CO relationship for the given response region.

By iterating through the lag sets, Buchholz et al. (2018) was able to use stepwise variable selection

without the need for large computational resources. This is because for a fixed set of lag values, the

number of possible covariates is relatively small. The number of possible covariates would be much larger if

instead all possible lags for each index were considered simultaneously, making stepwise selection

impractical based on computational requirements.
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Here we use regularization for both variable and lag selection. Because regularization is well suited for

cases with more covariates than observations, we are able to consider all possible lag values for each index

simultaneously, without requiring large computational resources. A general expression for the coefficient

estimates generated by regularization is given by

β̂ = arg min
β

n∑
i=1

(Yi −Xiβ)2 +

p∑
j=1

p(βj), (2.2)

where β is a vector containing all coefficients (ak, bij , and cl in Equation 2.1) corresponding to the

covariates in X (χk, χi · χj , and χ2
l in Equation 2.1), Y is the response, and p(β) is some penalty applied

to the coefficients. In Equation 2.2, i iterates through the number of observations and j iterates through

the number of covariates. The first term is the sum of squared residuals and can be thought of as a

measure of fit. The LASSO penalty, given by

p(β) = λ|β| (2.3)

has the added benefit of shrinking coefficient estimates to exactly zero, hence performing variable

selection (and lag selection for our application). The tuning parameter, λ ≥ 0, is a free parameter that

balances the fit term and the penalty term. We discuss our method for selecting λ values shortly.

Instead of the traditional 1-norm used in the LASSO, we apply a slightly more flexible penalty: the

minimax concave penalty (MCP). The MCP penalty is given by

p(β) =

{
λ|β| − β2

2η if |β| ≤ ηλ
ηλ2

2 otherwise.
(2.4)

While the LASSO penalty increases linearly with |β|, the MCP penalty gradually levels off until

eventually applying a constant penalty after |β| surpasses a threshold defined by the free parameter η ≥ 1.

Again, we discuss our method for selecting η values shortly. The MCP results in less biased estimates for

non-zero regression coefficients (Zhang, 2010). Essentially, it allows for larger coefficient estimates on the

significant terms (which might be closer to the “true” model). We found that using the MCP penalty over

the 1-norm penalty from the LASSO increased model performance. The price we pay for this generality is

the introduction of a second parameter, η, in additional to the traditional tuning parameter, λ, that

weights the penalty term.

The typical regularization fitting procedure involves minimizing the loss function (i.e. Equation 2.2) for

a sequence of λ values, called a solution path. A single model is then selected from the solution path using

an information criterion (e.g. AIC or BIC) or cross-validation test error. Here we use a more general form

of the BIC, called the Extended Bayesian Information Criterion (EBIC), given by

BICγ(s) = BIC(s) + 2γ log τ(s), (2.5)
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where s is the model being evaluated, BIC is the standard form of the BIC, τ is the number of possible

models with equation dimension (i.e. number of terms) as s, and γ ∈ [0, 1] controls the extra penalty

contained in the second term.

The EBIC can apply a much stronger penalty to large models (i.e. models with many selected terms)

than the BIC. This is well suited for applications in which the number of possible covariates is large, but

the true model might in fact be quite small. Since we believe this to be the case for the atmospheric CO

application, we use the EBIC rather than the BIC or cross-validation test error to select λ.

With these more flexible adaptations to the traditional LASSO, we are left with a number of free

parameters: λ, the tuning parameter, η, which controls the MCP penalty, and γ, which controls the EBIC.

For a given combination of these parameters, we fit the coefficients using the RAMP package in R (Hao et al.,

2018). RAMP is a recent regularization method that efficiently computes a hierarchy-preserving solution

path for quadratic regression (i.e. models including squared and interaction terms). Enforcing hierarchy, or

more specifically strong hierarchy, requires that terms present in an interaction are also present as main

effects. Strong hierarchy (also known as the marginality principle) has long been recommended for models

with interactions, as it helps avoid misinterpretation of the included covariates (Nelder, 1977). Another

benefit of the RAMP algorithm is its remarkable efficiency. RAMP is able to compute full solution paths much

faster than similar hierarchy-preserving algorithms available in R, such as hierNet (Bien et al., 2013) or

ncvreg (Breheny & Huang, 2011).

We select parameter values with a simple grid search broken into two steps:

1. Select a γ value on [0, 1]. Values closer to 0 will result in larger models and values closer to 1 will

result in smaller models. We discuss γ value selection in more detail in the following sections.

2. For the given γ value, vary λ and η simultaneously. For each combination of λ and η, fit regression

coefficients using the RAMP package. Select the model that minimizes the EBIC computed with the

selected γ value.

• The RAMP algorithm automatically computes a data-driven sequence of λ values, so no user input

is required.

• We vary η on a logarithmic sequence from 1.001 to 6. This range was selected manually by

trial-and-error and tuned specifically for this application. We tested this range on a number of

different covariate combinations and response regions (including MSEA), and the selected η

value always fell well within this range. Note that the optimal η value is completely data

dependent and this sequence will need to be adjusted for different applications or data.
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This grid search results in an optimal model, where optimal is defined by the choice of γ. In the

remainder of this chapter, we discuss how this modeling framework can be used to address our two goals of

interpretability and prediction.

2.5 Research Focus #1: Interpretable Models for Scientific Conclusions

Here we focus on interpreting the selected models, rather than their predictions. In addition to being

useful tools for prediction, these models can help explain the connections between climate and atmospheric

chemistry. For instance, scientists might be interested in the question: which index (and hence which

aspect of the global climate system) has the most influence on atmospheric CO loading in Maritime

Southeast Asia? Answering this will, for instance, help make predictions of the global carbon budget. We

can provide an elementary answer to this question by examining the selected model terms and lags.

2.5.1 Framework for Identifying Optimally Performing Models at Various Complexities

By simply varying γ over a range of values on [0, 1], we can create a list of “optimally performing”

models. Optimal here refers to the fact that these models are the result of a grid search over the other two

free parameters, λ and η. The resulting models decrease in complexity (i.e. number of terms), as larger γ

values make the EBIC’s penalty on large models stronger. Note that after selecting model terms via the

RAMP algorithm, we refit the coefficient estimates with their maximum likelihood estimates.

For the MSEA region, this procedure results in the models listed in Figure 2.5. The color of each box

corresponds to the γ value that was used to generate it. A number of γ values produce the same models.

In each box, the name of the index and the corresponding lag is listed (in the format “name lag”), along

with the coefficient estimates and standard error.

Moving from left to right in Figure 2.5, we see that the models decrease in size (from 17 terms to nine),

while their performance drops only slightly (from explaining 70% of variability in the response to 61%). By

examining the terms that remain in these models as they become more parsimonious, we can determine

which indices and lags are most influential in explaining variability in the response.

For the MSEA region, we can see that the Nino 3.4 index lagged at four weeks remains in all of the

models with a positive coefficient estimate. This makes sense, as ENSO is a major climate driver in the

tropics, with positive anomalies resulting in warmer, drier conditions (Nur’utami & Hidayat, 2016). The

lag of four weeks indicates that it takes about four weeks for the effect of a Nino 3.4 anomaly to impact CO

anomalies. Additionally, the Nino 3.4 lag of four weeks appears as a squared term in the most

parsimonious model, indicating that there is a nonlinear relationship between Nino 3.4 and CO. This is

confirmed by examining the residuals of a model fit to solely the Nino 3.4 lag of four weeks (not shown).
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Figure 2.5 Optimal models for the MSEA region for a sequence of γ values. Note that multiple γ values
often produce the same model. The color of each box corresponds to the γ value that was used to generate
the model contained within it. Within each box, the selected model terms are listed in the format
“name lag,” where lags are in weeks. Coefficient estimates and standard errors are listed for each term, and
summary statistics are listed below each model. Note that “Nino” refers to the Nino 3.4 index.

The selected DMI lags also suggest an interesting relationship. A DMI lag of 12 weeks remains in the

models as they become more parsimonious, as well as a shorter lag (which switches from one to four weeks

between the smallest two models). The sign of the larger lag is negative, while the sign of the shorter lag is

positive. Positive DMI anomalies are associated with reduced rainfall in parts of MSEA, while negative

DMI anomalies are associated with increased rainfall (Nur’utami & Hidayat, 2016).

One possible explanation for the selection of these lags is as follows. A negative DMI anomaly causes

increased rainfall in parts of MSEA. As a result of the rainfall, there is increased vegetation growth over the

next two months (and hence an increase in the amount of available biomass for fuel). A subsequent positive

DMI anomaly causes decreased rainfall. As a result, the biomass that has accumulated over the last two

months dries out, making it more prone to fire and hence increased CO loading. Note that the DMI lag of

12 weeks might be included solely to allow for an interaction with the Nino 3.4 lag of four weeks. However,

given the large coefficient on the DMI lag of 12 weeks, we believe that this main effect is significant.

A positive OLR lagged at one week remains in the MSEA model as it becomes more parsimonious.

This again makes sense, as positive OLR anomalies are associated with less cloud cover and hence less rain.

Therefore, we can infer that a decrease in rain increases the probability of fire and hence CO loading in the

short term. The TSA index, on the other hand, is only included in the largest model. This could be

because the TSA describes sea surface temperatures in the southern Atlantic Ocean, which is very far from
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the MSEA response region. Therefore, it makes sense that the TSA is less important than the other indices

in explaining CO variability in MSEA, as the other indices are based on aspects of the global climate

system located closer to MSEA.

Finally, two Nino 3.4 interaction terms remain in the model as it becomes more parsimonious. One

interaction is with the OLR at a one week lag and the other is with the DMI at a 12 week lag. The sign of

these interaction terms is the same as the non-Nino 3.4 component. This could indicate that the effects of

these indices are amplified when they are in phase, a result that has been previously identified in the

literature (Cleverly et al., 2016; Nur’utami & Hidayat, 2016).

2.5.2 Assessing Stability of Selected Model Terms

While the scientific conclusions drawn in the previous section are interesting and seem to broadly agree

with literature, we want to ensure that the selected covariates are in fact meaningful. That is, we want to

avoid over interpreting the role of covariates if slight changes in data result in drastically different models,

as these models would not be capturing a meaningful physics-based relationship but would rather be

artifacts of the specific training data.

Therefore, we perform one-year-out resampling to assess the “stability” of the selected models. More

precisely, we do the following.

1. Iterate through the years present in the data. For this application, this spans 2001 to 2019.

2. For each year, create two data sets:

• Training set: This set consists of all data except for the given year.

• Testing set: This set consists of only the given year left out of the training set.

3. Using the training set, refit two different models:

• Main model: This model maintains the same form as the model trained on all of the data. That

is, we force it to retain the same covariates. However, we refit the coefficients to the training set.

• New model: This model we completely recreate based on the training set. We do not force it to

take the same form as the model trained on all of the data.

4. Make predictions of the testing set using both the main model and the new model. Compute the root

mean square error (RMSE) of both sets of predictions.

Note that we perform this resampling on the largest model from Figure 2.5 (i.e. the model with the

most terms) because it contains most of the terms present in the more parsimonious models as well as

extra terms that result in slightly higher predictive skill.
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Figure 2.6 Results from the one-year-out resampling. Main model refers to the model forced to retain the
structure of the model trained on all of the data, but with refit coefficient estimates. New model refers to
the model allowed to completely change according to the particular training set. (a) shows the out of
sample prediction error for each training set. The year on the horizontal axis indicates which year was used
to test the models. The main model almost always out performs the new model. (b) shows the frequency
with which main model terms appear in the new models. Similarly (c) shows the frequency with which
terms not present in the main model appear in the new model. We see that the most significant terms
appear in many of the retrained models. The color in (b) and (c) corresponds to the proportion on the
horizontal axis and is included for visual clarity. Note that “Nino” refers to the Nino 3.4 index.

Figure 2.6 shows the results of this resampling and is divided into three sections. Figure 2.6(a) shows

the RMSE of the predictions described above. The RMSE of the main model (that is, the model that

retains the structure of the model trained on all data) tends to perform as well or better than the model
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allowed to completely change according to the new training set. This provides justification for using the

main model to predict out of sample CO anomalies (i.e. future CO anomalies using current climate data).

Note that the RMSE of the new model is significantly larger when 2006 and 2015 are left out of the

training set. These years have some of the largest CO anomalies (see Figure 2.2), which might indicate

that these extreme years are important in driving the form of the model.

Figure 2.6(b) and Figure 2.6(c) show how often certain model terms appear in the new models (that is,

the models allowed to completely change according to the new training data). This gives some indication of

the stability of the various model terms. If a term is present in many of the retrained models, then the

modeling framework is likely picking up a physics-based relationship. Terms that are absent from many of

the retrained models are more likely artifacts of the specific training set, rather than a true physical

relationship.

Figure 2.6(b) shows how often the main model terms reappear in the new models. Notably, the terms

present in the most parsimonious model from Figure 2.5 are most likely to appear in the retrained models.

This indicates that these terms are explaining the most stable aspect of the physical relationship. Other

terms, such as the 43 week DMI lag, rarely appear in the retrained models. This indicates that less

consideration should be given to these terms when attempting to explain the physical relationship between

climate and CO.

Figure 2.6(c) shows how often terms not present in the main model appear in the retrained models.

Note the different scales on the horizontal axis between subfigures (b) and (c). Here we see that a selection

of terms not in the main model appear relatively frequently in the retrained models. Recall that when

moving from the second smallest to the smallest model in Figure 2.5, the shorter DMI lag switches from

one week to four weeks. In Figure 2.6, we see that both the one and four week DMI lags show up in about

half of the retrained models. This indicates that these terms are interchangeable, and determining which is

included likely depends on the other selected covariates.

Figure 2.6(b) and Figure 2.6(c) further confirm that the terms present in the most parsimonious model

for the region (see Figure 2.5) are capturing meaningful signal and are not simply artifacts of the specific

training set. This is because they remain in a large majority of the retrained models, which iteratively

remove one year of data from the training set. Furthermore, Figure 2.6(c) illustrates that the interaction

between Nino 3.4 lagged at four weeks and DMI lagged at 12 weeks, although not present in the main

model, is still a significant interaction in explaining CO variability in MSEA. This also holds for the

interaction between SAM lagged at 51 weeks and OLR lagged at one week. The terms that are included

less often in the retrained models are likely more data dependent and help the model capture subtleties in

the response. As a result, it is more likely that these terms would change with small changes in the data.
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An example is the TSA term lagged at three weeks present in the main model. This term appears in less

than 30% of the retrained models, which confirms the analysis in Section 2.5.1 that finds that TSA is less

important in explaining CO variability in MSEA.

This analysis is useful when interpreting the selected model terms and using them to draw scientific

conclusions. Figure 2.6 provides justification for assigning scientific weight to the terms that remain in the

most parsimonious model in Figure 2.5.

2.6 Research Focus #2: Models with Predictive Skill

We now turn our attention to the predictive skill of the selected models, rather than their form or the

selected indices and lag values. There is obvious value in making advanced predictions of atmospheric CO

loading (again, a proxy for fire intensity, especially in the Southern Hemisphere). Advanced warning of a

particularly intense fire season would give governments enough time to properly staff fire departments,

stock up on masks, and warn citizens in high risk areas.

2.6.1 Model Predictions

The largest model from Figure 2.5 is used in this section, as we now focus on predictive skill rather

than model interpretability. In Figure 2.7 we show weekly observations and fitted values from two model

variants. Note that these predictions are in-sample, meaning that we are showing predictions of the

observations used to train the model. In Figure 2.7(a) we show predictions for the entire time series, with

summary statistics shown in the top right corners. The top plot shows predictions from a model without

the OLR index, while the bottom plot shows predictions from the full model (i.e. the model presented in

Figure 2.5). We can see that adding the OLR results in a slight increase in R2 and a slight decrease in

RMSE.

Furthermore, in Figure 2.7(b) and (c), we highlight two of the most anomalous years, which shows that

the OLR helps capture the extreme CO anomalies. For 2015 in particular, this makes sense, as the MJO

experienced an extreme anomaly during this time (which we attempt to capture with OLR).

In Figure 2.8(a) we show month-averaged observations and predictions from two different model

variants for the entire time series. The top plot shows predictions from a month-based model. To create

this model, we took month-averages of the predictor variables and then trained the model on only these

month-averaged covariates using the framework presented in Section 2.4. The bottom plot instead shows

the month-averaged predictions from the model trained on the weekly data (i.e. the model shown in

Figure 2.5). We see a noticeable increase in model performance when using the weekly data, suggesting

that the weekly data is able to capture meaningful signal beyond the month-averages.
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Figure 2.7 In-sample predictions from two model variants. In (a), the top plot shows predictions from the
optimal model without the OLR, and the bottom plot shows predictions from the optimal model with the
OLR. Adding the OLR appears to increase predictive skill during the extreme CO anomalies shown in (b)
and (c).

Figure 2.8 In-sample predictions from two additional model variants. In (a), the top plot shows predictions
from a model trained on month-averaged covariates, and the bottom plot shows month-averaged
predictions from a model trained on week-averaged covariates. The increase in model performance
indicates that there is meaningful signal in the higher frequency climate index data, which is clearly seen in
the anomalous years shown in (b) and (c).
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This is an interesting result, as it suggests that the higher frequency signals present in the climate

indices are in fact meaningful signal and not simply noise. This is perhaps most important for OLR (the

proxy for localized MJO), which has a higher frequency component than the other included climate indices.

This increase in performance can be seen clearly during the 2015 CO anomaly.

Note that Buchholz et al. (2018) present models based on month-averaged data. Here we wanted to

confirm that there was meaningful signal in the week-averaged data (i.e. that the weekly signal was not

just the monthly signal with additional noise). Figure 2.8 shows that there is in fact meaningful signal in

the weekly data, making these models with a higher temporal resolution an improvement over those

presented in Buchholz et al. (2018).

2.6.2 Increasing Minimum Lag Threshold

The model predictions shown in the previous section are useful for demonstrating model performance

and the comparative benefit of using the OLR and week-averaged data. However, these models include an

OLR term lagged at one week, which significantly reduces their practical utility. This model can only

predict as far in advance as the length of its smallest lag, or in this case, one week. Predictions with longer

lead times would give governments more time to prepare for intense fire seasons.

To increase the prediction horizon, we implement a minimum lag threshold to the modeling framework

that only allows lags greater than the threshold value to be selected. Because increasing this threshold

reduces the number of possible covariates, we also extend the maximum lag value as the minimum lag

threshold is increased. Specifically, we consider lags between the minimum lag threshold and 52 weeks plus

this threshold. This ensures that all models are based on one year of climate data, making it easier to

compare their predictive skill.

Figure 2.9 shows a selection of model performance metrics as this minimum lag threshold is increased.

Note that this figure is for the MSEA response region and considers the largest model from the range of

EBIC γ values (i.e. γ = 0).

The top plot in Figure 2.5 shows the number of terms in the selected model for each minimum lag

threshold. We can see that the models tend to have around 17 terms, although some have less. This will

have a slight effect on the performance metrics, albeit a small one. The second plot shows the R2 value of

the selected models. As expected, the model performance drops off as the minimum lag is increased.

However, this decline is not very rapid. That is, models with a high minimum lag threshold still explain a

large percent of the variability in atmospheric CO anomalies. This is promising, as it means that

predictions can be made farther in advance without losing too much predictive skill.
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Figure 2.9 Model performance for the MSEA response region at increasing minimum lag thresholds. Top
plot shows the number of terms in the selected model. Middle plot shows the R2 value of the selected
model. Bottom plot shows an average out of sample prediction error for each model with magenta lines
showing ± one standard deviation. Here we iteratively leave one year out, train the model on the
remaining data, and test it on the left out year. Plotted is the average RMSE with ± one standard
deviation lines in magenta from this procedure as a function of minimum lag. We can see that model
performance drops off with an increasing minimum lag threshold, although at a fairly gradual pace.

The third plot shows another performance metric: the average out of sample prediction error from a

similar one-year-out resampling study. Here we successively leave one year out, train the model on the

remaining data, and test it on the left out year. The average RMSE is then taken for each different

training and testing set pair and plotted as a function of minimum lag threshold. We again see that

performance falls off, although gradually.

We believe that the gradual decline of model performance is due to the highly auto-correlated nature of

the climate indices used here as predictor variables (not shown). Since many of the short lags are highly

correlated to larger lags of the same index, we believe that these larger lags are able to explain much of the

same CO variability when the shorter lags are excluded. This is again promising, as it means that

predictions can be made decently far in advance (on the order of a half year) without dramatically

compromising performance.

To further visualize model performance at increasingly large minimum lag thresholds, we consider

predictions for the 2015 CO event in the MSEA region. Figure 2.10 shows predictions from the models

corresponding to the minimum lag thresholds from Figure 2.9. In Figure 2.10, the color scale represents the

CO anomaly, and the horizontal axis represents time. The bar along the bottom of the figure shows CO
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observations from 2015. The remainder of the vertical axis corresponds to the minimum lag threshold used

to fit the models, and hence each row of the figure corresponds to predictions from a different model. The

predictions largely capture the structure of the CO observations for minimum lag thresholds below 25

weeks (about six months). After this point, the predictions begin to flatten out (i.e. not capture the

extremes in the response) and the predicted spike drifts earlier in the year (starting around late September

instead of mid October). This result largely agrees with Shawki et al. (2017), who found that a drought

metric could be reasonably predicted 180 days (about 25 weeks) in advance. However, unlike Shawki et al.

(2017), our predictions rely solely on past climate mode index anomalies, rather than forecasts from a

global climate model.

We therefore believe that these models can be useful for predicting the structure of the CO anomalies

up to six months in advance for MSEA. However, if a very high level of fidelity is required on a weekly

timescale, then restricting predictions to less than a three month lead time is advised.

Figure 2.10 Predictions of the 2015 CO anomalies in the MSEA response region for a range of minimum lag
thresholds. Color represents the CO anomalies, and the horizontal axis represents time. Observations are
shown as a horizontal bar along the bottom of the figure. The remaining vertical axis corresponds to the
minimum lag value, and hence each row of the figure is a prediction from a different model. We see that
the general structure of the observed CO anomalies is preserved for minimum lags under 25 weeks (about
half a year).
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2.7 Summary

Here we build on previous work aimed at explaining the relationship between climate and atmospheric

CO variability. Again, atmospheric CO is a useful proxy for fire intensity in the Southern Hemisphere, as

fires are the main source of CO variability in the Southern Hemisphere and CO is easy to remotely sense

on a global scale.

We have developed a regularization framework that highlights a variety of optimally performing models

at decreasing complexities, isolating the most important indices and lag values as the models become more

parsimonious. Notably, for the MSEA response region, we identify the Nino 3.4 index lagged at four weeks

as a primary driver of atmospheric CO. Other important climate indices are the DMI and OLR (as a proxy

for the MJO). We further identify that Nino 3.4 interactions with the OLR and DMI are significant

predictors, suggesting that the effect of these indices is amplified when they are in phase.

Note that these findings largely agree and expand upon the results in Buchholz et al. (2018). For the

MSEA region, Buchholz et al. (2018) found that a Nino 3.4 lag of one month, DMI lag of eight months,

TSA lag of five months, and SAM lag of one month were important predictors. The largest model

presented in this study contains a Nino 3.4 lag of four weeks, DMI lag of 43 weeks, TSA lag of three weeks,

and SAM lag of two weeks. All but the TSA term (which we have shown is not very important for the

MSEA region) agree closely on their selected lag. However, the models we present here are capable of

including multiple lags of a single index, which expands on the work in Buchholz et al. (2018) and

highlights more complex relationships between climate and CO.

We also performed a sensitivity analysis in which we use leave one-year-out resampling to quantify the

robustness of the “main model” fit to all of the data, justifying its use in predicting future CO anomalies.

Additionally, we determine which model terms are most likely to remain in the model with slightly

different data, finding that the model terms that remain in the most parsimonious model are very likely to

remain in the resampled models. This justifies assigning scientific weight to the selection of these model

terms, as it suggests that their inclusion in the model is not an artifact of the specific training data used.

Furthermore, in-sample model predictions for the MSEA response region can explain around 70% of the

variability in the weekly CO anomalies solely using climate indices as predictor variables. We further use

these predictions to highlight the importance of the OLR (as a proxy for the MJO) in overall model

performance and in capturing the most extreme CO anomalies. Similarly, we show that month-averaged

predictions from a model trained on week-averaged data outperform predictions from a model trained on

month-averaged data. This suggests that there is meaningful signal in the week-averaged data and justifies

its use over month-averaged data.
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These predictions present an improvement over the models in Buchholz et al. (2018). When using

week-averaged data to train the model, we are able to explain 87% of the variability in the month-averaged

CO observations. The model in Buchholz et al. (2018) explains 75% of the month-averaged CO. This

increase in predictive skill is likely a result of: 1) the ability to include multiple lags of a single climate

mode index, 2) the additional signal contained in the week-averaged data, and 3) the inclusion of the OLR

proxy index.

Finally, we perform a minimum lag threshold study to push the predictive capabilities of these models.

We find that models for the MSEA response region are still able to explain around 65% of the weekly

atmospheric CO variability when forced to only use lags greater than 35 weeks. This indicates that

predictions can be made relatively far in advance without losing the overall structure and general

amplitude of the CO anomalies. If these models are to provide advanced warning of fire season intensity,

then this is beneficial because it extends the time available to prepare.
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CHAPTER 3

A HIERARCHICAL SPATIAL MODEL FOR ESTIMATING METHANE FIELDS FROM

REMOTELY SENSED OBSERVATIONS WITH NOISE

3.1 Introduction

Natural gas is often referred to as a “bridge fuel” between other fossil fuels and renewable energy.

Methane (the primary component of natural gas) produces less carbon than both coal and oil when

combusted and has a shorter lifetime than carbon dioxide if released into the atmosphere (EIA, 2020; EPA,

2020). However, methane absorbs more energy than carbon dioxide, making it a much more potent

greenhouse gas (EPA, 2020). Therefore, if methane is to be considered a cleaner alternative to other fossil

fuels, its production, transportation, and storage must be done in a way that limits both fugitive emissions

(i.e. leaks) and operational emissions (i.e. venting). To ensure that this is being done, effective emissions

monitoring is required.

Emissions monitoring can be performed using an array of platforms: ground-based “fenceline” sensors,

aircraft, and satellites. The use of fenceline sensors is relatively new, but may improve monitoring because

of their high sampling rate and positioning close to the oil and gas facilities. However, they are hard to

deploy across an entire basin because of their operational and deployment costs, making large scale

emission estimates challenging (Fox et al., 2019). Aircraft can be used to provide top-down emission

estimates over a larger spatial domain than individual fenceline sensors, but these overflight campaigns are

costly and are often only performed in response to a previously identified leak (Hirst et al., 2013).

Compared to the other monitoring platforms, satellites provide the largest spatial coverage, often

spanning the entire globe on a daily basis. This makes them an important tool when quantifying the global

carbon budget (Crowell et al., 2019). However, satellite observations are limited by their coarse spatial

resolution, making it very challenging to isolate specific emission sources. The highest resolution methane

data made publicly available has a resolution of 7×5.5 km, meaning that specific sources within this area

cannot be distinguished (Hu et al., 2016). Commercial options, such as the Montreal-based GHGSat,

provide much higher resolution data (on the order of 50×50 m) by focusing on a single region, rather than

providing global coverage (Jacob et al., 2016). However, these data are not publicly available.

Here we focus on methane observations from The Tropospheric Monitoring Instrument (TROPOMI) on

board the Sentinel-5 satellite (Veefkind et al., 2012), as satellite-based observations have great potential for

supplementing other methane monitoring platforms despite their relatively coarse resolution. Much

research has gone into estimating basin-wide or global emissions using satellite data. These estimates are
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often the result of inversion studies that utilize transport models. Zhang et al. (2020) use TROPOMI data

and a nested version of the GEOS-Chem transport model to estimate methane emissions from the Permian

basin in the United States. Similarly, Crowell et al. (2019) compile an ensemble of flux inversion models

that use data from the OCO-2 instrument to estimate global carbon dioxide fluxes. Other notable studies

include Kort et al. (2014), Turner et al. (2015), and Buchwitz et al. (2017). These estimates are extremely

important when compiling the global carbon budget and provide a useful comparison to bottom-up

engineering or inventory estimates, often finding that the bottom-up estimates undercount total emissions

(Turner et al., 2015; Zhang et al., 2020).

These large basin-wide studies, however, do not focus on isolating specific emission sources. Other work

has focused on this task, such as Varon et al. (2019), which identifies plume structure in the TROPOMI

data and uses source rate retrieval algorithms to estimate emission fluxes. However, these rate retrieval

algorithms require that the methane plume spans multiple TROPOMI pixels, making it challenging to

isolate small to medium sized leaks.

Here we present a framework for predicting methane concentrations at sub-pixel resolution. The

purpose of this work is to localize small scale emissions that would not otherwise be detectable (i.e. that do

not span multiple TROPOMI pixels). This could be useful for rapid event identification on a small scale

and for comparison to the other emissions monitoring techniques described above. Specifically, we seek to

answer the following questions:

1. Can we say something meaningful about the continuous methane field on a scale smaller than

TROPOMI’s footprint?

2. Can we quantify the uncertainty in our estimate of this continuous field?

To address these questions, we have developed a hierarchical spatial model to estimate the methane

field given a set of TROPOMI observations and their corresponding footprints, which builds on previous

work. The problem of estimating a hidden or unknown field given noisy observations of that field is well

studied. This is known as geostatistical prediction, Kriging, or optimum interpolation (e.g. Cressie (1993)).

Two issues are often present when Kriging satellite data. The first is the need to model non-stationary

covariance structures, which is not accounted for in the traditional Kriging spatial model. The second is a

computational bottleneck that results from estimating statistical parameters for the covariance function.

This process scales as O(n3) operations, where n is the number of observations, which quickly becomes

infeasible for large n. Much work has gone into addressing these issues, such as Nychka et al. (2002) and

Cressie & Johannesson (2008).
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Instead of addressing these issues, however, we instead focus on how TROPOMI’s footprint affects the

Kriging estimate. Since this work focuses on the localization of small scale emissions, we can work with

relatively small spatial domains (i.e. a geological basin on the scale of 54 square miles). This makes the

non-stationarity and computational concerns typically encountered when Kriging satellite data less of an

issue.

We expand on the general Kriging estimate to account for the shape of the TROPOMI footprint,

broadly following the structure of the data model presented in Nguyen et al. (2017). This model assumes

the observations from the satellite instrument are spatial averages over the unknown field within each

footprint plus a noise term. While Nguyen et al. (2017) focus on using the model for spatial data fusion

between satellite instruments, we focus instead on sub-footprint predictions, with the ultimate goal of

monitoring or localizing small scale methane emissions from the oil and gas industry. Work in this direction

can be used to fuse monitoring data across platforms (i.e. between fenceline sensors, aircraft, and satellite).

The rest of this chapter is organized as follows. In Section 3.2, we describe the TROPOMI data used in

this study. In Section 3.3, we outline the hierarchical spatial model we have created to estimate the

methane field from the TROPOMI observations, and in Section 3.4 we discuss parameter estimation for

this model. In Section 3.5 we discuss our methods for making predictions and quantifying their

uncertainty, and in Section 3.6 we apply this model to a single TROPOMI overpass of northeast Colorado.

Finally, we discuss our results and future work in Section 3.7.

3.2 Methane Observations from the TROPOMI Instrument

The Tropospheric Monitoring Instrument (TROPOMI) is the scientific instrument on board the

Copernicus Sentinel-5 Precursor satellite. TROPOMI was launched on October 13, 2017 and has been

providing publicly available data since April 30, 2018. TROPOMI observes each geographical point

approximately once per day with a spatial resolution of 7×5.5 km as of August 2019. Earlier observations

had a resolution of 7×7 km (Veefkind et al., 2012). The resolution of the TROPOMI instrument provides a

remarkable improvement over similar scientific instruments. The Ozone Monitoring Instrument (OMI) on

board the Aura satellite has a resolution of 13×24 km and the Global Ozone Monitoring Experiment-2

(GOME-2) on board the METOP-A satellite has a resolution of 80×40 km (Levelt et al., 2006; Munro

et al., 2016). TROPOMI retrievals include a number of trace gasses, including ozone, carbon monoxide,

nitrogen dioxide, sulfur dioxide, and methane. Here we focus on methane.

The two largest anthropogenic sources of methane in the United States are natural gas production and

enteric fermentation (i.e. the digestive process in cattle) (EPA, 2021). Although TROPOMI has global

coverage, we further focus on a smaller spatial domain centered in northeast Colorado (bounded by
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latitudes 39.5 and 41.1 and longitudes -104.5 and -103.7) highlighted in blue in Figure 3.1, as this region

contains both of these anthropogenic methane sources. Specifically, it contains a large portion of the

Denver-Julesburg (DJ) Basin, a significant oil and gas producing region spanning northeast Colorado,

southeast Wyoming, and southwest Nebraska. Additionally, it contains part of Weld County, a major

agricultural center with many cattle farms.

The TROPOMI methane data used in this chapter are available from the NASA Goddard Earth

Sciences Data and Information Services Center (GES DISC) (NASA, 2021).

Figure 3.1 Map of the Denver metropolitan area, Boulder, and Fort Collins with our selected region of
study highlighted in blue. This region contains oil and gas production and cattle farms, the two largest
anthropogenic sources of methane emissions in the United States.

3.3 Hierarchical Spatial Model for Estimating Methane Field

Methane concentrations are assumed to be a continuous field across space. We are interested in

estimating this field at specific points (referred to as the “prediction grid”) using the TROPOMI methane

observations. This type of data analysis can be broadly categorized as a change of support problem. That
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is, we are interested in using observations at a coarse spatial resolution (TROPOMI observations, z) to

estimate the same quantity at a finer resolution (the continuous methane field sampled at the prediction

grid, c). We can write this problem as z = F(c), where F is the function that transforms the underlying

methane field to the TROPOMI observations. Ultimately, however, we are interested in computing the

methane field as a function of the observed data, or c = F−1(z).

To solve this problem, we have created a hierarchical spatial model. The TROPOMI observations, z,

make up the highest level of our model. These observations are a function of the underlying methane field,

c, which makes up the second level. To simplify this problem we assume that c is the methane field on a

fine and regular grid. The resolution of this grid is set so that the interpolation between grid points does

not incur appreciable error. We further assume that the observations, z, are an average of the methane

field, c, over the spatial domain of the footprint. Future work will utilize retrieval characteristics to closer

approximate the true averaging process, which is more sophisticated than a simple average. We model c as

a fixed term plus a spatial process, both of which are governed by a set of parameters that, along with a

parameter controlling the measurement error in z, make up the lowest level of our model.

Accordingly, the highest level of our model (the data level) is written as

z = Wc+ ε, (3.1)

where W is a matrix that averages the methane field, c, to produce each entry in z and ε ∼ N(0, τ2) is a

Gaussian white noise error term. Each row of W applies a weight to every entry in c, such that Wc

produces the values of the TROPOMI observations. In this study, we apply equal weight to c within each

observation footprint. The W matrix is considered known and fixed, although improvements to this

assumption are discussed in Section 3.7. Note that W is not an invertible matrix, which makes directly

computing c impossible.

The second level of our model (the process level) is written as

c = Xβ + y, (3.2)

where X is a matrix of covariates, β is the corresponding vector of coefficients, y ∼ N(0, σ2K(θ)) is a

Gaussian process, and K(θ) is the covariance matrix that results from evaluating the covariance function,

k(si, sj |θ, σ2), at all points in the prediction grid. We assume an exponential covariance function, namely

k(si, sj |θ, σ2) = σ2 exp

(
−||si − sj ||

θ

)
(3.3)

where ||si − sj || is the great circle distance between the two points si and sj . Our choice of covariance

function is arbitrary at this point, and future work will implement a data-driven method for selecting k.

This model definition does not require a specific set of covariates, and we present one modeling option in
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Section 3.6. Finally, we assume that cov(y, ε) = 0, or that the spatial process, y, is independent of the

measurement error governed by τ2.

The third level of our model (the parameter level) contains the parameters that govern the data and

process levels. We have τ2, the variance of the measurement error, σ2, the process variance, θ, the range

parameter, and β, the coefficients of the fixed part of the process level model. Instead of a Bayesian

approach in which we would specify prior distributions for each of these parameters, we instead estimate

them directly via maximum likelihood.

Bringing together the data and process levels and the assumptions discussed above, we get that

z = WXβ +Wy + ε, (3.4)

with y and ε multivariate normal, or equivalently

z ∼ N(WXβ, σ2WK(θ)WT + τ2I). (3.5)

3.4 Estimating Model Parameters

We use maximum likelihood to estimate the covariance parameters ω = (σ2, τ2, θ) and the coefficients

β. We begin by using Equation 3.5 to write the PDF for z given ω and β, and hence the associated log

likelihood,

L(ω, β|z) = −m
2

ln(2π)− 1

2
ln(|Σ(ω)|)− 1

2
(z −Aβ)TΣ(ω)−1(z −Aβ), (3.6)

where m is the number of TROPOMI observations, A = WX, and Σ(ω) = σ2WK(θ)WT + τ2I is the

covariance of z. We wish to maximize L over ω and β. We first hold ω fixed and maximize over just β.

This results in the generalized least squares (GLS) estimate for β, given by

β̂(ω) = (ATΣ(ω)−1A)−1ATΣ(ω)−1z. (3.7)

We now plug β̂(ω) back into the log likelihood to get

L(ω, β̂(ω)|z) = −m
2

ln(2π)− 1

2
ln(|Σ(ω)|)− 1

2
(z −Aβ̂(ω))TΣ(ω)−1(z −Aβ̂(ω)), (3.8)

which is solely a function of ω and is called a profiled likelihood. Next we analytically maximize L over

the process variance, σ2. To do this, we must first reparameterize using a smoothing parameter, defined as

λ = τ2/σ2. Under this reparameterization, the covariance matrix becomes

Σ(ω) = σ2(WK(θ)WT + λI), (3.9)

and plugging this expression into Equation 3.7 gives

β̂(θ, λ) = (AT (WK(θ)WT + λI)−1A)−1AT (WK(θ)WT + λI)−1z, (3.10)

33



which notably does not depend on σ2. With this profiled estimate for β, we can simplify the third term

of the likelihood to make the maximization over σ2 easier. This term is a weighted residual sum of squares

between the observations z and the fixed component of the model Aβ. Therefore, we define

RSS(θ, λ) = (z −Aβ̂(θ, λ))T (WK(θ)WT + λI)(z −Aβ̂(θ, λ)), (3.11)

which again does not depend on σ2. Writing the likelihood in terms of RSS(θ, λ) gives

L(ω, β̂(ω)|z) = −m
2

ln(2π)− 1

2
ln(|Σ(ω)|)− RSS(θ, λ)

2σ2
. (3.12)

Finally, note that

|Σ(ω)| = (σ2)m|WK(θ)WT + λI| (3.13)

ln(|Σ(ω)|) = m ln(σ2) + ln |WK(θ)WT + λI|, (3.14)

and hence the log likelihood simplifies to

L(ω, β̂(ω)|z) = −m
2

ln(2π)− m

2
ln(σ2)− 1

2
ln |WK(θ)WT + λI| − RSS(θ, λ)

2σ2
. (3.15)

We are now well positioned to maximize σ2 analytically. Setting the partial of Equation 3.15 equal to

zero and solving for σ2 gives

σ̂2(θ, λ) =
RSS(θ, λ)

m
. (3.16)

We substitute σ̂2 back into the log likelihood to get a much reduced expression:

L(θ, λ|z) = −m
2

ln(2π)− m

2
ln(σ̂2(θ, λ))− 1

2
ln |WK(θ)WT + λI| − m

2
. (3.17)

The likelihood is now solely a function of the range parameter, θ, and the smoothness parameter, λ,

rather than the three covariance parameters, ω = (σ2, τ2, θ) and the coefficients β. We maximize Equation

3.17 via a simple grid search over the remaining two parameters: θ and λ. For each parameter combination

in the grid search, we perform three steps:

• Compute β̂(θ, λ) using Equation 3.10 for a sequence of q (typically around 50 or 60) sequential

TROPOMI overpasses. Define β̂avg(θ, λ) as the average of these q GLS estimates. β̂avg(θ, λ) is a

more robust estimate than the GLS estimate from a single TROPOMI overpass. Note that we

discard TROPOMI overpasses with less than 22 observations (or about 10% coverage of our area of

interest), as these overpasses do not have enough data to properly estimate the mean field. Future

work might implement a more data-driven approach to this data cleaning step.

• Compute a similarly robust estimate of the process variance, denoted σ̂2
avg(θ, λ), using Equation 3.16

and β̂avg(θ, λ).
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• Compute L(θ, λ|z) using Equation 3.17 and σ̂2
avg(θ, λ) for each of the q sequential overpasses, denoted

Li, where i = 1, 2, ..., q. Define Ltotal =
∑q
i=1 Li, which is used to select the optimal values of θ and

λ. Future work will explore a method of weighting each Li based on the quality of available data for

the ith overpass.

We select the values of θ and λ that maximize Ltotal as the maximum likelihood estimates (MLEs),

denoted θ̂MLE and λ̂MLE. We then compute the MLEs for β and σ2 by evaluating Equations 3.10 and 3.16,

respectively, using θ̂MLE and λ̂MLE. Because of the invariance of MLEs under 1-1 transformations, we can

easily retrieve the MLE for τ2 given σ̂2
MLE and λ̂MLE because τ2 = σ2 λ. With these estimates, we have

fully defined our model.

Note that using multiple TROPOMI overpasses to compute β̂avg assumes that each overpass is

independent of the others. This is a reasonable assumption, but the model could be improved. The

seasonal trend in atmospheric methane and weather conditions can introduce dependence in methane

concentrations over time. Furthermore, large methane emissions do not always dissipate after 24 hours,

meaning that the TROPOMI overpasses following such an emission would be correlated to the day of the

emission event. Future work will exploit the correlation between subsequent TROPOMI overpasses,

discussed further in Section 3.7.

3.5 Predictions and Uncertainty

With maximum likelihood estimates for the covariance parameters ω = (σ2, τ2, θ) and the coefficients

β, we can now create predictions for the spatial process, y. Using properties from the conditional normal

distribution we get that

ŷ = cov(y, z) cov(z, z)−1 (z −WXβ̂MLE), (3.18)

where the covariance functions here are the same as in Equation 3.3. It is straightforward to then estimate

the methane field, which is given by

ĉ = Xβ̂MLE + ŷ. (3.19)

However, we are interested not only in predicting the methane field, but also in quantifying the

uncertainty in our prediction. To do this, we use conditional simulation to create an ensemble of equally

likely methane fields given the TROPOMI observations, z. We get an estimate of the uncertainty in our

predictions by examining the variability within this ensemble. Note that we could have instead computed

standard errors for our predictions using properties of the conditional normal given the relatively small size

of our study region (see Figure 3.1).

A general outline of the conditional simulation algorithm is given below:
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• Using the MLEs θ̂MLE and λ̂MLE , we generate a synthetic spatial process, y∗, by computing

y∗ = LTu, (3.20)

where L is the Cholesky decomposition of cov(spred), spred are the locations on which we predict the

methane field, and u ∼ N(0, 1). This result follows from the definition of the Cholesky decomposition

and the affine transformation properties of the multivariate normal distribution.

• For each day, we generate synthetic TROPOMI observations, z∗, according to

z∗ = Wc∗ + ε∗, (3.21)

where c∗ = Xβ̂MLE + y∗, ε∗ is a draw from N(0, τ̂2MLE), and W captures the footprint geometry for

each overpass.

• Using z∗ and the equations discussed earlier in this section, we then compute predictions, ŷ∗, of the

synthetic field, y∗.

• Since we created y∗, we know it exactly. This allows us to compute the error of our prediction,

e = ŷ∗ − y∗.

• Finally, we can repeat this process for M many synthetic fields. Each e is an equally likely draw from

y − ŷ, making each ŷ + e an equally likely spatial process. The collection of M equally likely

processes is called an ensemble.

With this ensemble, we can compute the standard error of the M fields at each prediction location.

This gives an estimate of the prediction standard error with variance proportional to 1/M . We can also use

this ensemble to perform any number of interesting inferences, discussed further in the following section.

3.6 Application to TROPOMI Overpass

In this section we apply our modeling framework to a TROPOMI overpass occurring on July 9, 2020.

We predict the methane field, c, for this overpass on an equally spaced grid, with predictions occurring

every 0.0175 degrees in both latitude and longitude (or about two km in both directions). This grid size

was selected to balance prediction fidelity and computational expense. A prediction grid at this resolution

results in about 16 prediction locations per TROPOMI footprint for this overpass. Figure 3.2(a) shows our

study region for scale and reference. Figure 3.2(b) shows the TROPOMI methane observations within our

selected region from the July 9 overpass. The prediction grid we have selected is plotted over the

TROPOMI observations.
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Figure 3.2 (a) Map of the Denver metropolitan area with our selected region of study highlighted in blue.
(b) TROPOMI methane observations over our region of study on July 9, 2020 with prediction grid overlaid.

For this example, we have selected four covariates and a fixed term to model the mean trend. Two of

the covariates are simply latitude and longitude, which will account for any linear gradients in the field.

However, in such a small area, we do not expect these terms to have a large influence on the mean field.

The other two covariates account for the two primary anthropogenic sources of methane in the United

States: natural gas production and enteric fermentation (i.e. the digestive system in cattle). We expect

these terms to have a relatively constant affect on methane concentrations on the scale of two to three

months, which is the time frame we consider when estimating model parameters.

We include natural gas production in our model using a relatively simply metric: the number of

producing wells within a two km radius (using the same grid as the prediction grid described above). This

metric highlights areas with a large oil and gas presence. Well data for Colorado was obtained from the

Colorado Oil and Gas Conservation Commission (COGCC), which has a wealth of data related to the oil

and gas industry in Colorado (COGCC, 2021). One quantity they record is simply the location of each oil

and gas well in the state and its current production status (i.e. is it producing or not producing). We could

have also included a covariate related to the volume of oil and gas being produced, rather than simply the

presence of wells. However, exploratory analysis showed that these data were extremely heavy tailed,

resulting in a small number of prediction grid locations having a mean field estimate orders of magnitude
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higher than the rest. Instead of transforming this variable, we simply discarded it, as it highlighted largely

the same area as the variable capturing the presence of wells.

We include the influence of enteric fermentation in our model with a similar metric: the number of

cattle within a seven km radius (again using the same grid size as the prediction grid). To create this

covariate, we use the Gridded Livestock of the World (GLW) data set from the Food and Agriculture

Organization of the United Nations. Specifically, we use their GLW3 product, which was created in 2016

and has a much finer resolution than previous products at 0.083 decimals degrees (approximately 10 km at

the equator) (Gilbert et al., 2018). This data set is based on a collection of agriculture censuses performed

at a variety of spatial scales. These include global censuses performed by the UN, country wide censuses,

and occasionally county or province level censuses. In the United States, county level data is available from

the USDA Agriculture Census. The data is then down sampled to a much finer resolution using a number

of spatial predictors (including anthropogenic, topography, vegetation, and climate variables, often from

MODIS) (Gilbert et al., 2018).

Figure 3.3 The two covariates related to anthropogenic sources of methane plotted over space. (a) Log of
the number of cattle within two km of each prediction grid point. Data from the GLW3 product (Gilbert
et al., 2018). (b) Log of the number of producing oil and gas wells within two km of each prediction grid
point. Data from the COGCC (COGCC, 2021).

Figure 3.3 shows the two covariates related to anthropogenic sources of methane described above. Note

that we take the log of the count data, as the counts were heavy tailed. Exploratory analysis found that
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log transforming these variables results in smoother mean field estimates. Figure 3.3(a) shows the log of

the number of cattle within two km of each prediction grid point. Note that there is a fairly sharp

boundary at 40 degrees of latitude. This is a result of the down sampling used in the GLW3 product. This

line of latitude was likely a boundary of one of the MODIS pixels, resulting in a sharp difference in cattle

estimates on either side. Future work will consider different ways of modeling the cattle data. Figure 3.3(b)

shows the log of the number of producing wells within two km of each prediction grid point. Note that a

constant value of 10 was applied to the count data before taking the log to account for zero counts.

With these covariate definitions, we can estimate model parameters as described in Section 3.4. For this

example, we use 67 TROPOMI overpasses occurring between May and August of 2020 to estimate the

MLEs. The log likelihood surface resulting from the grid search over λ and θ is shown in Figure 3.4. Here

we plot the Ltotal values resulting from each combination of λ and θ values.

Figure 3.4 Log likelihood surface used to estimate λ and θ. The MLEs are shown as a red dot and a 95%
confidence level is drawn in red.

Figure 3.5(b) shows the estimated mean field after fitting β as described in Section 3.4. The presence of

oil and gas wells is clearly reflected in the mean field estimate, but the presence of cattle is largely ignored.

This is because the size of the estimated coefficient on oil and gas wells was much larger than the estimated

coefficient on cattle, which was nearly zero. This could be because the cattle data was too coarse to

provide any useful information. There is also a linear gradient from the latitude and longitude terms.
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Figure 3.5 (a) TROPOMI observations on July 9, 2020 for reference. (b) Mean field contribution based on

β̂MLE . Note the dramatically different scales between (a) and (b), which indicates that the mean field is
not important in the overall methane field estimate for such a small spatial domain.

Figure 3.6 (a) TROPOMI methane observations in our study region on July 9, 2020. (b) Estimated
methane field given the TROPOMI observations and MLEs.
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It is important to note that the methane scale in Figure 3.5(b) is much smaller than that of

Figure 3.5(a). This indicates that, ultimately, the mean field is not important in the methane field

estimation. This makes sense, as we are working with a very small region, so we do not expect there to be

a very noticeable mean trend to remove. Note that in Figure 3.6 (discussed momentarily), the range of the

estimated methane field is much larger than the range of the mean field shown in Figure 3.5(b).

With maximum likelihood estimates for the covariance parameters ω = (σ2, τ2, θ) and the coefficients

β, we can use Equations 3.18 and 3.19 to predict the continuous methane concentrations on the prediction

grid described above. Figure 3.6(a) again shows the TROPOMI observations and their respective

footprints for the overpass on July 9, 2020. Figure 3.6(b) shows predictions of the methane field.

Finally, we perform the conditional simulation with an ensemble size of M = 200. Prediction standard

errors are shown in Figure 3.7(a). The blue points show the center of each TROPOMI footprint. The

standard errors clearly increase as you move away from the observations. Figure 3.7(a) highlights an

overpass with relatively dense observations. More frequently, however, TROPOMI observations are quite

sparse (usually due to cloud cover). These standard error plots will be especially useful in scenarios with

less data.

Figure 3.7 (a) Standard errors from an ensemble with M = 200. (b) Estimated probability of each
prediction location containing a methane concentration in the top 1% of all predictions within the ensemble.
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In addition to giving us an estimate of prediction uncertainty, the ensemble of equally likely methane

fields allows us to perform other interesting inferences. Figure 3.7(b) highlights one example. Here we plot

the estimated probability of a prediction location containing a methane concentration in the top 1% of all

conditional means within the ensemble. These probabilities clearly highlight three or four locations that are

most likely to contain the highest methane concentrations in the region for this given overpass. This type of

inference is of particular interest, as a large percent of anthropogenic methane emissions comes from a small

percent of emission events (Zavala-Araiza et al., 2017). It is therefore important to locate these “super

emitter events” so that their sources can be identified and addressed, hence reducing future emissions.

3.7 Summary

We are interested in predicting continuous methane concentrations on a fine grid given remotely sensed

observations from the TROPOMI instrument. Methane is a potent greenhouse gas, and a better

understanding of the continuous methane field across an oil and gas producing basin can help identify

emission events. We have created a hierarchical spatial model for estimating the underlying methane field

from a set of TROPOMI observations, largely following the model definition from Nguyen et al. (2017).

This framework takes into account the footprint of the TROPOMI observations when estimating model

parameters, rather than treating them as point concentrations. We use maximum likelihood to estimate

model parameters and account for multiple TROPOMI overpasses to ensure that these estimates are

robust. Furthermore, we use conditional simulation to create an ensemble of equally likely methane fields

given a single TROPOMI overpass. This ensemble allows us to quantify the uncertainty in our estimates

and perform interesting inferences. As an example, we use the ensemble to compute the probability of each

location within the study region containing a methane concentration in the top 1% of all predictions within

the ensemble. This highlights a small number of locations that are most likely to contain the largest

methane concentrations.

There are many ways in which we could potentially improve the predictions from this model, with some

listed below.

• Use cross-validation to select the smoothness of the covariance function, as opposed to arbitrarily

selecting an exponential form. A smoother member of the Matérn family might be better suited to

these data.

• Incorporate temporal dependence in the q subsequent methane fields used to estimate β̂.

• “Sharpen” the W matrix by including fractional weights when a prediction location is partly inside of

a given TROPOMI footprint.
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• Add weights to the W matrix to account for specific aspects of the TROPOMI retrieval algorithm.

This would better approximate the true “forward model” that converts the methane concentrations

to TROPOMI observations. Other options would be to weight the measurement error or include a

bias term.

• Implement a fully Bayesian approach in which we specify prior distributions for each parameter and

sample the resulting posterior with Markov chain Monte Carlo (MCMC) methods.

• Model the influence of advection and diffusion by adding vector wind fields to the model.

Future work will also investigate assimilation techniques for constraining the output of this model with

data from the other emissions monitoring techniques described in Section 3.1. In particular, we have access

to continuously monitored methane data from Project Canary, an environmental standards company.

These data are collected in near real time on oil and gas sites across Colorado.

Ultimately, we believe that the modeling framework presented here is a first step towards extracting

meaningful information on a small scale using only the coarsely pixelated TROPOMI observations. We

hope that this work will help monitor methane emissions via satellite and provide avenues for improvement

and comparison to more localized, ground-based sensors.
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CHAPTER 4

CONCLUSION

We have presented two modeling studies aimed at addressing pressing environmental issues through the

use of remotely sensed data. The first seeks to explain the relationship between climate variability and fire

season intensity. We do this by modeling remotely sensed carbon monoxide, a proxy for fire intensity in the

Southern Hemisphere. These models are parsimonious by design, allowing for scientific interpretation of

the selected climate indices and lag values. We identify the Nino 3.4 climate index lagged at four weeks as

a primary driver of atmospheric CO in the Maritime Southeast Asia region. Other important climate

indices are the DMI and OLR (as a proxy for the MJO). We further identify that Nino 3.4 interactions

with the OLR and DMI are significant predictors, suggesting that the effect of these indices are amplified

when they are in phase.

We develop a framework for assessing the stability of the selected model terms, ultimately finding that

the terms present in the most parsimonious model are very likely to remain in models refit to resampled

training data. This justifies assigning scientific weight to the selection of these model terms, as it suggests

that their inclusion in the model is not an artifact of the specific training data used. We show that the

models for Maritime Southeast Asia are able to explain about 70% of the variability in weekly CO

anomalies. Finally, we show that our models are still able to explain about 65% of the variability in CO

when forced to use lags of 35 weeks or greater. This is promising, as it indicates that predictions made

relatively far in advance can still capture the overall structure and amplitude of the CO anomalies.

The second study predicts methane concentration on a fine grid using the spatially averaged

TROPOMI observations. Because the prediction grid is at a finer resolution than the TROPOMI

footprints, we take into account the shape of each footprint when estimating model parameters. We fit a

hierarchical spatial model via maximum likelihood and use conditional simulation for uncertainty

quantification and inferences on derived quantities. As an example, we estimate the probability of a

prediction location containing a methane concentration in the top 1% of all predictions within the

ensemble. These probabilities highlight three or four locations likely to contain the highest methane

concentrations in the region for this given overpass.

Ultimately, we believe that this modeling framework is a first step towards extracting meaningful

information on a small scale using only the TROPOMI observations. We plan on comparing the

predictions from our model to other monitoring techniques, such as the site-level continuous monitoring

data from Project Canary or the aircraft-level methane data from a JPL overflight campaign planned for
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the summer of 2021. We hope that this work will help monitor methane emissions via satellite and provide

avenues for improvement and comparison to more localized sensors.

To conclude, we briefly connect the two projects through their mutual dependence on remotely sensed

information. For the fire season intensity study, both predictor and response variables in our model depend

on remotely sensed data. The response (carbon monoxide) is observed via satellite, and many of the

predictors (climate mode indices) are computed using sea surfaces temperature also observed via satellite.

For the methane field prediction study, both predictor and response variables again depend on remotely

sensed data. The response (methane) is observed via satellite, and one of the predictors (down-sampled

cattle counts) depends on remotely sensed vegetation and ground cover information. Clearly, satellite

remote sensing provides vital information for environmental studies, as we demonstrate with these two

examples.
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