Using Climate Mode Indices to Forecast Carbon Monoxide Variability
In Fire-Prone Southern Hemisphere Regions
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Motivation Statistical Model
e Certain regions in the Southern Hemisphere experience extreme e We use multiple linear regression with interaction terms to e Including the OLR (as a proxy for MJO) increases predictive skill,
carbon monoxide (CO) anomalies as a result of biomass burning. estimate the relationship between CO and climate indices. especially during the largest anomalies (e.g., 2006 and 2015).
e Two goals for this work: 2 4
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e We model deseasonalized, week-averaged CO anomalies from Xijk1are the climate indices with coefficients aj, bj, and ¢ R . XL o
ciy s i : : - T; i | are the lag values for each index in weeks. -2 v
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S o002 2004, 2006 2008 20100 2012  2014! |2016 2018 . o . . o Figure 4: Model predictions in two extreme years highlighting OLR contribution.
_ o e Variable and lag selection is done via a flexible regularization
S g framework with free parameter y controlling the size of the model. ® Increasing the minimum lag allowed in the model pushes out the
5 87 prediction horizon. At a 6 month lead time, the model captures the
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3 o Goal #1: Interpretable Models shape of the 2015 spike and explains 68% of the variability.
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, , o , e By varying y, we get a selection of optimally performing models )
Figure 1: Week averaged, deseasonalized CO anomalies in MSEA region. Y ying ¥ . g . P . yP 5 >
that decrease in size. Terms are listed in the format “name_1lag.” _ 30~ l 50
e We use five climate mode indices as predictor variables: Nifio 3.4, g o
Est (Std. Error) Est (Std. Error) 2 20
DMI, TSA, SAM, and OLR as a proxy for the MJO. (Intercept) 0.3 (0.70) (Intercept) -1.6 (0.78) = e :
nino_4 7.6 (0.83) nino_ 4 7.2 (0.78) 5 15 40
. . . . . . . dmi 1 5.7 (0.79) dmi_4 7.2 (0.93) £ |
e Climate indices are related to regional climate (e.g., rainfall), which dmi_ 12 6.1 (0.75) dmi 12 8.0 (0.87) £ 10 20
. . . . dmi 43 1.8 (0.65) sam 51 -3.1 (0.67) a .
affects drought conditions, vegetation growth, and ultimately fire tsa_3 -2.2 (0.64) olr_1 3.5 (0.79) 5 I 0
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i i 80 standard error: 10.22 standard error: 11.42 1. Multiple lags of a single index are important for explaining CO.
o 60 Multiple R—squaredi 0.70 Mul_tiple R—squaredf 0.61 . . .
" ACJusted R-squared: 0.8 Acjusted R-squared: 9.08 2. Including OLR helps capture extreme CO anomalies in MSEA.
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Carbon monoside standard deviation [opb] ' Figure 3: Optimal model for MSEA region at two different sizes. 3. Model explains 68% of CO variability at 6 month lead time, making
o RO A S/ G | '* | 80 It a useful tool for fire season preparedness.
= 60 e nino_4 with a positive coefficient indicates that dry conditions For more details, see Daniels et al. preprint!
o 40 from a positive Nino 3.4 anomaly take four weeks to increase fire
_ . 20 intensity and subsequent CO concentrations in MSEA. References
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spatial range of influence of four climate mode indices overlaid in white.
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