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Motivation

Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result 
of biomass burning.
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Australia
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Our goals:  

1. Predict CO at useful lead times 

2. Build interpretable models for scientific conclusions
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Response variable - carbon monoxide

4

• Use multiple linear regression to model atmospheric CO 
• CO aggregated within the MSEA biomass burning region via spatial and temporal averages
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Response variable - carbon monoxide
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Response variable: Deseasonalized, week-averaged CO anomalies at time t
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Covariates - climate mode indices
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• Climate mode indices are metrics that describe aperiodic variability in climate

Nino 3.4 (NINO)

Dipole Mode Index (DMI)

Tropical South Atlantic (TSA)

Antarctic Oscillation (SAM)

Outgoing Longwave Radiation

(OLR)
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Covariates - climate mode indices
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Covariates: Week-averaged climate mode indices lagged at time t - τ
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Statistical model
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We use lagged multiple linear regression model with first order interactions and squared terms 

CO(t) = μ + ∑
k

ak χk(t − τk) + ∑
i,j

bij χi(t − τi) χj(t − τj) + ∑
l

cl χl(t − τl)2 + ϵ(t)

Main effects Interaction terms Squared terms

CO(t) - CO anomaly in a given response region at time t

       - constant mean displacement

       - climate indices

       - lag value for each index in weeks

   (t) - error term

μ
χ
τ

ϵ
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Regularization framework for variable and lag selection
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̂β = argmin
β

n

∑
i=1

(Yi − Xiβ)2 +
p

∑
j=1

p(βj)

We consider lags between 1 and 52 weeks for each index

• Results in far more covariates than observations

• Regularization well suited for this regime (p >> n)
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Regularization framework for variable and lag selection
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̂β = argmin
β

n

∑
i=1

(Yi − Xiβ)2 +
p

∑
j=1

p(βj)

p(β) = λ |β |LASSO

MCP

p(β)

|β |

λ

λ
0

0 ηλ

We consider lags between 1 and 52 weeks for each index

• Results in far more covariates than observations

• Regularization well suited for this regime (p >> n)

We use the minimax concave penalty (MCP)
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Regularization framework for variable and lag selection
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Evaluate models along the solution path via the extended Bayesian information 
criterion (EBIC)

• Similar to BIC, but can increase penalty on larger models

• Control with free parameter 

•  results in smaller models

•  results in the BIC (and hence larger models) 

γ ∈ [0,1]
γ → 1
γ → 0

Regularization 

MCP 

EBIC 

→ λ
→ η
→ γ

Free parameters:
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Regularization framework for variable and lag selection
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Evaluate models along the solution path via the extended Bayesian information 
criterion (EBIC)

• Similar to BIC, but can increase penalty on larger models

• Control with free parameter 

•  results in smaller models

•  results in the BIC (and hence larger models) 

γ ∈ [0,1]
γ → 1
γ → 0

Picking parameter values

• For a given , vary  and  in a grid search

• Pick the model that minimizes EBIC for that 

• More on  selection to come!

γ η λ
γ

γ

Regularization 

MCP 

EBIC 

→ λ
→ η
→ γ

Free parameters:
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Interpretable models lead to scientific conclusions
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γ = 1

Smallest model highlights important climate-chemistry 
connections:

1. NINO has strong influence on CO at a four week lead time




William Daniels, wdaniels@mines.eduOctober 8, 2021

Interpretable models lead to scientific conclusions
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γ = 1

Smallest model highlights important climate-chemistry 
connections:

1. NINO has strong influence on CO at a four week lead time

2. Effect of DMI depends on length of lag
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Interpretable models lead to scientific conclusions
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γ = 1

Smallest model highlights important climate-chemistry 
connections:

1. NINO has strong influence on CO at a four week lead time

2. Effect of DMI depends on length of lag

3. NINO interactions suggest that NINO amplifies effect of other indices
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Model has good predictive skill at useful lead time
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γ = 0
OLR helps capture the most extreme CO anomalies
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Model has good predictive skill at useful lead time
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R2 = 0.68

R2 = 0.70
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Conclusions
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We are using natural variability in the climate to model atmospheric CO (a proxy for fire intensity)

• Interpretable models help explain natural drivers of fire season intensity 

• Models have good predictive skill up to lead times of ~6 months in MSEA
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Thank you! Questions?
See manuscript on EarthArXiv for details:


