

COLORADOSCHOOLOF MINES Interpretable Models

William Daniels¹, R. R. Buchholz², H. M. Worden², F. Ahamad³, D. M. Hammerling¹

¹Colorado School of Mines, Golden, CO, USA ²National Center for Atmospheric Research, Boulder, CO, USA

> ASA CO/WY Fall 2021 Meeting wdaniels@mines.edu October 8, 2021

Predicting Fire Season Intensity in Maritime Southeast Asia with

- ³AQ Expert Solutions, Jalan Dato Muda Linggi, Negeri Sembilan, Malaysia

Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result of biomass burning.

October 2015

Palangkaraya, Indonesia

January 2020

Canberra, Australia

of biomass burning.

Our goals:

- Predict CO at useful lead times 1.
- 2. Build interpretable models for scientific conclusions

Certain Southern Hemisphere regions experience extreme carbon monoxide (CO) anomalies as a result

October 2015

Palangkaraya, Indonesia

January 2020

Canberra, Australia

- Use multiple linear regression to model atmospheric CO

Mean carbon monoxide [ppb]

• CO aggregated within the MSEA biomass burning region via spatial and temporal averages

Response variable - carbon monoxide

Response variable: Deseasonalized, week-averaged CO anomalies at time t

Covariates - climate mode indices

Climate mode indices are metrics that describe aperiodic variability in climate \bullet

October 8, 2021

William Daniels, wdaniels@mines.edu

Nino 3.4 (NINO)

Dipole Mode Index (DMI)

Tropical South Atlantic (TSA)

Antarctic Oscillation (SAM)

Outgoing Longwave Radiation (OLR)

Carbon monoxide standard deviation [ppb]

Covariates: Week-averaged climate mode indices lagged at time t - τ

We use lagged multiple linear regression model with first order interactions and squared terms

$$CO(t) = \mu + \sum_{k} a_{k} \chi_{k}(t - \tau_{k}) + \sum_{i,j} b_{ij} \chi_{i}(t - \tau_{i}) \chi_{j}(t - \tau_{j}) + \sum_{l} c_{l} \chi_{l}(t - \tau_{l})^{2} + \epsilon(t)$$

Main effects Interaction terms Squared terms

CO(t) - CO anomaly in a given response region at time t

- μ constant mean displacement
- χ climate indices
- τ lag value for each index in weeks
- ϵ (t) error term

William Daniels, wdaniels@mines.edu

8

Regularization framework for variable and lag selection

We consider lags between 1 and 52 weeks for each index

- Results in far more covariates than observations
- Regularization well suited for this regime (p >> n)

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \sum_{j=1}^{p} p(\beta_j)$$

Regularization framework for variable and lag selection

We consider lags between 1 and 52 weeks for each index

- Results in far more covariates than observations
- Regularization well suited for this regime (p >> n)

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \sum_{j=1}^{p} p(\beta_j)$$

We use the minimax concave penalty (MCP)

LASSO
$$p(\beta) = \lambda |\beta|$$

MCP $p(\beta) = \begin{cases} \lambda |\beta| - \frac{\beta^2}{2\eta} & \text{if } |\beta| \le \eta \\ \frac{\eta \lambda^2}{2} & \text{otherwise} \end{cases}$

Evaluate models along the solution path via the extended Bayesian information criterion (EBIC)

- Similar to BIC, but can increase penalty on larger models
- Control with free parameter $\gamma \in [0,1]$
- $\gamma \rightarrow 1$ results in smaller models
- $\gamma \rightarrow 0$ results in the BIC (and hence larger models)

Evaluate models along the solution path via the extended Bayesian information criterion (EBIC)

- Similar to BIC, but can increase penalty on larger models
- Control with free parameter $\gamma \in [0,1]$
- $\gamma \rightarrow 1$ results in smaller models
- $\gamma \rightarrow 0$ results in the BIC (and hence larger models)

Picking parameter values

- For a given γ , vary η and λ in a grid search
- Pick the model that minimizes EBIC for that γ
- More on γ selection to come!

 $\gamma = 1$

Est	(Std.	Error)
(Intercept)	-1.6	(0.78)
nino_4	7.2	(0.78)
dmi_4	7.2	(0.93)
dmi_12	-8.0	(0.87)
aao_51	-3.1	(0.67)
olr_1	3.5	(0.79)
I(nino_4^2)	2.5	(0.54)
nino_4:olr_1	3.5	(0.76)
nino_4:dmi_12	-6.5	(0.77)
aao_51:olr_1	-2.3	(0.67)
Adjusted R-sq	uared	0.60

connections:

Smallest model highlights important climate-chemistry

1. NINO has strong influence on CO at a four week lead time

	Est	(Std.	Error)
	(Intercept)	-1.6	(0.78)
	nino_4	7.2	(0.78)
	dmi_4	7.2	(0.93)
	dmi_12	-8.0	(0.87)
	aao_51	-3.1	(0.67)
	olr_1	3.5	(0.79)
	I(nino_4^2)	2.5	(0.54)
	nino_4:olr_1	3.5	(0.76)
	nino_4:dmi_12	-6.5	(0.77)
	aao_51:olr_1	-2.3	(0.67)
			0.00
1.5	DATINETED R-SU	llared	0 60

connections:

Smallest model highlights important climate-chemistry

1. NINO has strong influence on CO at a four week lead time 2. Effect of DMI depends on length of lag


```
\gamma = 1
```

Est	(Std.	Error)
(Intercept)	-1.6	(0.78)
nino_4	7.2	(0.78)
dmi_4	7.2	(0.93)
dmi_12	-8.0	(0.87)
aao_51	-3.1	(0.67)
olr_1	3.5	(0.79)
I(nino_4^2)	2.5	(0.54)
nino_4:olr_1	3.5	(0.76)
nino_4:dmi_12	-6.5	(0.77)
aao_51:olr_1	-2.3	(0.67)
Adjusted D an	uorod	0.00

eu n-syuareu.

connections:

- 1. NINO has strong influence on CO at a four week lead time 2. Effect of DMI depends on length of lag
- 3. NINO interactions suggest that NINO amplifies effect of other indices

Smallest model highlights important climate-chemistry

15

Model has good predictive skill at useful lead time

 $\gamma = 0$

Est (Intercept) nino_4 dmi_1 dmi_12 dmi_43 tsa_3 aao_2 aao_2 aao_38 aao_51 olr_1 olr_13 nino_4:olr_1 nino_4:olr_1 nino_4:dmi_1 dmi_1:dmi_12 nino_4:aao_51 tsa_3:olr_1 aao_2:olr_13	<pre>(Std. Error) 0.3 (0.70) 7.6 (0.83) 5.7 (0.79) -6.1 (0.75) 1.8 (0.65) -2.2 (0.64) -3.6 (0.61) -2.2 (0.64) -1.6 (0.63) 2.3 (0.74) 3.4 (0.71) 3.2 (0.66) 3.2 (0.81) -4.5 (0.56) -4.2 (0.77) -2.3 (0.63) -2.1 (0.68)</pre>
aao_2:olr_13 nino_4:aao_2	-2.1 (0.68) -1.8 (0.70)
Adjusted R-squar	ed: 0.68

OLR helps capture the most extreme CO anomalies

- No OLR Model Predictions
- OLR Model Predictions

Adjusted R²

No	
OLR Model	OLR Mod
0.66	0.68

Model has good predictive skill at useful lead time

William Daniels, wdaniels@mines.edu

17

We are using natural variability in the climate to model atmospheric CO (a proxy for fire intensity)

- Interpretable models help explain natural drivers of fire season intensity
- Models have good predictive skill up to lead times of ~6 months in MSEA

35	Est (Std. Error)
30	nino_4 7.2 (0.78)
	dmi_4 7.2 (0.93)
25	um1_12 -8.0 (0.87)
Minimum	aao_51 -3.1 (0.67)
lag 20	olr_1 3.5 (0.79)
[weeks]	I(nino_4^2) 2.5 (0.54)
15	nino_4:olr_1
	nino_4:dmi_12 -6.5 (0.77)
10	aao_51:olr_1 -2.3 (0.67)
MOPITT	
observations	Adjusted R-squared: 0.60

MSEA CO anomaly in 2015 [ppb]

Thank you! Questions?

See manuscript on EarthArXiv for details:

William Daniels wdaniels@mines.edu October 8, 2021

AR COLORADO SCHOOL OF MINES

