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Abstract

A main source of atmospheric carbon monoxide (CO) variability in the Southern Hemisphere
is large burn events, making CO a useful proxy for fires. Therefore, predictive CO models over
fire regions can help countries prepare for unusually large fire seasons. Fires are related to the
climate through fuel dryness and availability, both of which respond to variability in the climate.
Climate indices are metrics that summarize climate variability through changes in sea surface
temperature and wind. In previous work, we developed a multiple linear regression model that
uses these climate indices to predict atmospheric CO and created the R package regClimateChem
to perform variable selection. This package offers three different variable selection techniques:
stepwise selection, a genetic algorithm, and an exhaustive search. The exhaustive search always
finds the best possible model but is computationally expensive. Stepwise selection runs quickly
and is scalable but often fails to find the best model. We implement a genetic algorithm as
a potential compromise between computational expense and model accuracy. As a stochastic
variable selection technique, the genetic algorithm has many parameters that affect the stopping
criterion, frequency of the model modification techniques, and population size. Here we present
a parameter optimization study for the genetic algorithm, seeking to balance computational
expense and model quality. When considering models with four covariates, we find that the
optimized genetic algorithm parameters result in a runtime reduction of 11.8% and only com-
promise 0.3% accuracy compared to the default settings. We then consider models with five
covariates using a high-performance computing system. For models with five covariates, we find
that the optimized population size becomes close to the total number of models, meaning it
behaves similarly to the exhaustive method.

Keywords: carbon monoxide, climate chemistry, multiple linear regression, variable selection,
genetic algorithm, optimization
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1 Introduction

1.1 Motivation

In the Southern Hemisphere, large burn events are a main source of atmospheric carbon monoxide
(CO) variability [1, 2]. As a result, atmospheric CO can be used as a proxy for fire intensity [3].
An early warning system for unusually intense fire seasons would have many public safety benefits.
For example, it would give governments time to stock up on masks, recruit more volunteer fire
fighters, and warn the public.

In a previous study, we used CO data collected through the Measurements Of Pollution In The
Troposphere (MOPITT) instrument onboard the Terra satellite [4]. MOPITT has been gathering
data since 2000 and uses the optimal estimation retrieval approach [5]. The data are available at
https://asdc.larc.nasa.gov/project/MOPITT. In order to minimize systematic and random error we
selected daytime, land-only retrievals from the thermal infrared version 7 product [3, 6]. Anomalies
were created by subtracting a spatial and climatological average of monthly CO from 2001 to 2016
from monthly average values. See Buchholz et al. [3] for details. There are 7 different regions that
are of interest in the Southern Hemisphere: Maritime Southeast Asia (SEA), North Australasia,
South Australasia, Central Southern Africa, South Southern Africa, Central South America, and
Southern South America [3]. Figure 1 shows the total column CO concentrations and the anomaly
produced for a specific region, Maritime SEA. For this study we solely focus on the Maritime SEA
region.

Figure 1: This Figure is from Buchholz et al. [3]. The plot on the top shows the monthly average of total
column CO in the Maritime SEA region (grey dots) with the climatological seasonal cycle (black line) [3].
The plot on the bottom shows both negative and positive CO anomalies.

Large burns events are directly related to the availability of biomass, dryness of vegetation, and
lack of water. These conditions are tied to natural variability in the climate. Climate indices are
useful metrics that describe this natural variability through air temperature, sea surface tempera-
ture, air pressure, and other measurable fields. To connect atmospheric CO and climate variability,
Buchholz et al. [3] uses four different climate indices — Niño 3.4, DMI, TSA, AAO — as predictors
in a multiple linear regression model. Figure 2 shows the climate indices from 2001 to 2017, the
time span used in this study. Our study aims to expand on the analysis performed in Buchholz et
al. [3] by exploring multiple methods of variable selection and identifying the optimal parameter
configuration for the genetic algorithm.
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Figure 2: This figure is from Buchholz et al. [3]. Shown are the four different climate indices over the time
period of our study. Positive anomalies are shown in red and negative anomalies are shown in blue.

1.2 Statistical Model

In a previous study, we developed a multiple linear regression model to model the total column CO
seen by MOPITT [4]. These models can be used for predictive purposes. The response variable in
our model is the carbon monoxide anomalies and the predictor variables are the climate indices.
The climate indices are lagged from 1 to 8 months because our model is intended for prediction.
Each possible combination of lag values (one lag for each index) is called a “lagset.”

For a given region in the Southern Hemisphere, the multiple linear regression model can be
described by equation (1).

CO(t) = µ+
∑
k

ak · χk(t - τk) +
∑
i,j

bij · χi(t - τi) · χj(t - τj) (1)

In equation (1), CO(t) is the CO anomaly at time t in the given response region, χ are the climate
indices, τ is the lag value for each index in months, µ is the constant mean displacement, and ak
and bij are coefficients. χk are the main effects and χi and χj are the interactions. The lag value,
once chosen for an index, will remain the same for both the main and interaction terms.

1.3 regClimateChem R Package

In a previous study, we created the R package regClimateChem to perform variable selection for the
model described in equation (1) [7]. The regClimateChem package provides three variable selection
techniques: exhaustive, stepwise, and the genetic algortihm. The genetic and exhaustive search
are implemented using the glmulti package, and stepwise selection is implemented via the MASS

4



package [8] [9].
We use the Bayesian Information Criterion (BIC) to compare the models selected by these three

variable selection techniques. We compare models using the BIC because it imposes a relatively
harsh penalty on the number of terms in the selected model and results in models that do not
overfit the data. This results in models that are well suited for prediction. The equation for the
BIC is

BIC = ln(n)k − 2ln(L̂),

where n is the number of observations, k is the number of covariates, and L̂ is the maximized value
of the likelihood function. Lower BIC values correspond to better models. The first term in the
BIC acts as a penalty for complexity and the second term measures how well the model fits the
data. The BIC is well suited for prediction because of how harsh the complexity penalty is. For
the BIC, ln(n) is used as a coefficient on the penalty term, where n is the number of observations.
Comparatively, the Akaike Information Criterion (AIC) penalty uses a coefficient of 2 instead,
making the penalty not as harsh.

Stepwise selection is an iterative process that begins with either the null model or the full model.
With each iteration, the algorithm considers removing or adding a predictor to minimize the BIC.
The algorithm selects the model that minimizes the BIC. The process stops once adding or taking
out a term no longer decreases the BIC. In comparison, the exhaustive method computes the BIC
value for all possible models to find the best one. The genetic algorithm uses different model
modification techniques to find the best model, and will be explained in more detail in Section 2.

Daniels et al. [7] found that with only four predictor variables, the runtime of the genetic
algorithm is very similar to that of the exhaustive search in certain scenarios. Our goal is to
optimize the genetic algorithm such that the runtime is minimized, while still producing good
models. The genetic algorithm implementation in the glmulti package has many parameters that
can be adjusted to fit the needs of the particular use case. Here we present an optimization study
to find the best glmulti parameters for the atmospheric CO application. By optimization, we refer
to minimizing runtime while maximizing model performance.

2 Genetic Algorithm

2.1 Introduction

The genetic algorithm is implemented in regClimateChem via the glmulti package in R. We use
the scenarios studied in Daniels et al. to better compare to previous work [7]. In this study, the
genetic algorithm was found to be less scalable but more accurate, meaning it usually finds better
models than stepwise selection. The genetic algorithm is stochastic and therefore uses probability
to converge on a final model.

We now discuss the genetic algorithm in depth. A population of models is randomly initialized
to begin an iterative process. The genetic algorithm modifies this population using three different
techniques (described in detail later) to create a subsequent generation of this population. The
number of models in the population is held constant through each successive generation. The
algorithm continues to produce new generations until a stopping criterion is satisfied. Although
the algorithm is probabilistic in nature, it is designed to improve the population of models with
each successive generation. This is done by creating future generations based on the best models
in the current generation. In our study, models are assessed using the BIC. Models in the current
generation (called parent models) are used to create new models in the next generation (called
child models). A general flow of the genetic algorithm is shown in Figure 3.
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Figure 3: A general flow of the genetic algorithm.

The genetic algorithm uses a binary system to represent terms in the model. For each model,
a term that is present is represented with a 1 and a term that is not present is represented with a
0. An example of this representation can be seen in Figure 4.

Figure 4: Example of the genetic algorithm binary model representation. A constant term (β0) is always
included. For brevity, a simplified model is demonstrated in this example with no interaction terms present.

2.2 Model Modification Techniques

In the genetic algorithm, the current generation of models is modified using three different tech-
niques to create the next generation of models. These techniques are:

• Asexual Reproduction

• Sexual Reproduction

• Immigration

With asexual reproduction, each term in the model has the chance to mutate at a given prob-
ability called the mutation rate. When a term mutates, its binary representation switches. That
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is, if an included term mutates, it will no longer be included, and vice versa. A depiction of this
process can be seen in Figure 5.

Figure 5: Example of asexual reproduction in the genetic algorithm

With sexual reproduction, two parent models are chosen to produce children models that will
become a part of the next generation. The selection of parent models is biased according to the
BIC. This means that “better” models are more likely to be selected as parent models. This makes
future generations more likely to contain the best possible model. Each term in the child model
has a 50% chance of coming from each parent model. An example of this modification method is
shown in Figure 6.

Figure 6: Example of sexual reproduction in the genetic algorithm. Terms that are included in both parents
are always included in the child model, otherwise there is a 50% chance the term comes from parent 1 or 2.

The last model modification technique is immigration. Immigration introduces more variability
into future generations compared to the other modification techniques. Immigration does not
involve a parent model. When a model is produced via immigration, each term has an equal
probability of being included or excluded. This completely randomizes the new model. This process
allows for a wider range of models to be introduced and prevents the algorithm from getting “stuck”
in local minima of the BIC.

2.3 Relative Frequency of Modification Techniques

The relative frequency of the three modification techniques is set by two glmulti parameters: imm

and sexrate. Imm stands for the rate of immigration and sexrate is the rate of sexual reproduction.
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The parameter imm represents the proportion of models that go through immigration relative to the
number of models that go through asexual reproduction. The parameter sexrate represents the
proportion of models that go through sexual reproduction relative to the number of models that go
through asexual reproduction. The default rate for imm and sexrate are 0.3 and 0.1 respectively.

2.4 Stopping Criterion

The stopping criterion in the genetic algorithm is checked every 20 generations. The stopping
criterion is made up of three different parameters: deltaM, deltaB, and conseq. The algorithm
stops (i.e. converges) once seperate criteria for deltaM, deltaB, and conseq are met. DeltaM is
the target change in the mean information criterion between the models in the current generation
and the models in the previous generation. DeltaB is the target change in the best information
criterion between models in the current generation and models in the previous generation. These
criteria are met when the mean and best BIC of the current generation no longer decrease by
deltaM and deltaB, respectfully. Conseq is the number of iterations that the genetic algorithm
will run through once deltaM and deltaB are both satisfied. Larger values of conseq increase the
probability that the best model is found when the algorithm converges.

3 Optimization Study

3.1 Overview

We vary glmulti parameters in order to find the parameter combination that is optimal in terms of
both runtime and model accuracy. Runtime refers to the total clock time it takes for the genetic
algorithm to converge. Model accuracy refers to the ability of the genetic algorithm to reproduce
the best models found by the exhaustive search. To quantify model accuracy, we look at the
proportion of models that are different between the genetic algorithm and the exhaustive search
when considering all lagsets, which we call the proportion of differences. For the following study,
each parameter value was varied independently, keeping the other parameters fixed at their default
value.

3.2 glmulti Parameters

The parameters that we have chosen to consider in our optimization study are listed in Table 1:

Table 1: Each genetic algorithm parameter we vary is shown, along with the default and different values that
are studied.

Parameter Default Values Studied

Population Size 100 5, 20, 40, 60, 80, 100

Mutation Rate 0.001 10−5, 0.001, 0.2

Sexual Reproduction Rate 0.1 0.001, 0.1, 0.7

Immigration Rate 0.3 0.001, 0.3, 0.7

Consecutive Iterations 5 1, 2, 3, 4, 5
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4 Four Covariate Case

We begin our optimization study with a four-covariate model, to better compare with models
examined in Buchholz et al. [3]. To quantify uncertainty in our results, we ran the simulation
5 times at each parameter test value holding all other values fixed. In the following figures, the
boxplots summarize the proportion of differences across the five trials at each parameter value. In
Section 5, we consider a five covariate model to test if these results scale with model size. Note that
the y-axis for the following plots differ, as the proportion of difference values span a large range.

4.1 Population Size

Figure 7: Results from varying population size. Default value of population size is boldfaced on the x-axis.
Proportion of differences between the genetic algorithm and the exhaustive search are presented as box plots
and correspond to the left vertical axis. Runtimes are plotted as blue circles and the exhaustive runtime is
shown as a horizontal line which corresponds to the right vertical axis.

For the population size, we only studied values below the default of 100 because the total number
of possible models in the four covariate case is 113. With a population size greater than 100,
the genetic algorithm would essentially be performing an exhaustive search, as each population
of models would contain nearly all of the possible models. A population size of 40 decreases the
runtime compared to the exhaustive search, and runtimes increase for values larger than 40. The
population size of 40 minimizes the runtime over the other values tested, and it also results in one
of the smallest proportion of difference values. Therefore, we select 40 as the optimal population
size for the four covariate case where the total number of possible models is 113.
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4.2 Immigration Rate

Figure 8: Results from varying the immigration rate. Default value of the immigration rate is boldfaced on
the x-axis. Proportion of differences between the genetic algorithm and the exhaustive search are presented
as box plots and correspond to the left vertical axis. Runtimes are plotted as blue circles and the exhaustive
runtime is shown as a horizontal line which corresponds to the right vertical axis.

Figure 8 shows that the immigration rates greater than 0.3 result in longer runtimes compared to
0.001. Although the proportion of differences at an immigration rate of 0.001 might appear high,
it is actually quite low considering the scale of the y-axis. For these reasons, we choose 0.001 as
the optimal value for immigration rate.

4.3 Sexual Reproduction Rate

Figure 9: Results from varying the sexual reproduction rate. Default value of the sexual reproduction rate
is boldfaced on the x-axis. Proportion of differences between the genetic algorithm and the exhaustive search
are presented as box plots and correspond to the left vertical axis. Runtimes are plotted as blue circles and
the exhaustive runtime is shown as a horizontal line which corresponds to the right vertical axis.
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The default sexual reproduction rate of 0.1 minimizes the proportion of differences. Furthermore,
there are only slight improvements in runtime when switching to a value of 0.001. Therefore, we
select 0.1 as the optimal sexual reproduction rate parameter.

4.4 Mutation Rate

Figure 10: Results from varying the mutation rate. Default value of mutation rate is boldfaced on the x-axis.
Proportion of differences between the genetic algorithm and the exhaustive search are presented as box plots
and correspond to the left vertical axis. Runtimes are plotted as blue circles and the exhaustive runtime is
shown as a horizontal line which corresponds to the right vertical axis.

A mutation rate below the default of 10−3 drastically increases runtime while leaving the proportion
of differences largely unchanged because the y-axis is on such a small scale. Increasing the rate
leaves the proportion of differences at essentially zero while slightly decreasing the runtime. So, we
select 0.2 as the optimized mutation rate parameter.
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4.5 Consecutive Value

Figure 11: Results from varying the consecutive size. Default value of consecutive size is boldfaced on the
x-axis. Proportion of differences between the genetic algorithm and the exhaustive search are presented as
box plots and correspond to the left vertical axis. Runtimes are plotted as blue circles and the exhaustive
runtime is shown as a horizontal line which corresponds to the right vertical axis.

Increasing the consecutive value increases the runtime linearly. This is expected because the con-
secutive value determines how many additional generations the algorithm will produce once deltaB
and deltaM conditions are satisfied. Each additional generation adds to the overall runtime of the
algorithm in a linear manner. All consecutive values that are listed have a proportion of differences
that is less than 2%. We choose 2 as the optimal value because the proportion of differences is
almost zero and it has a lower runtime than the default value.

4.6 Discussion of Results

The optimized parameters in the four covariate case are as follows with the default in parenthesis.

• Population size: 40 (100)

• Mutation rate: 0.2 (0.001)

• Sexual reproduction rate: 0.1 (0.1)

• Immigration rate: 0.001 (0.3)

• Consecutive size: 2 (5)

In Figure 12, we directly compare the default glmulti parameter values to the optimized values.
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Figure 12: Comparison of default glmulti parameters to optimized parameters.

The optimized values decrease the runtime an average of 11.8% relative to the default values.
The exhaustive runtime was 7.18 minutes and our optimized genetic algorithm is on average 6.06
minutes. The proportion of differences only decreases by an average of 0.28% between the default
and optimized parameters. These results are for the four covariate case only. With only four
covariates, the runtimes are already very short. Therefore, the time savings from this optimization
are small. In Section 5, we examine the five covariate case, which will potentially have more room
for optimization gains, as there are many more possible models.

5 Five Covariate Case

5.1 Varying a Single Parameter at a Time on a Personal Computer

To determine if our results scale to larger models, we consider a similar optimization study with
five covariate models instead of four covariate models. The five covariate model includes the same
climate indices as the four covariate model but with one interaction term. We began by varying
the five glmulti parameters individually using a high, middle, and low value. This was done to
select appropriate parameter ranges which we would study in more detail on a high-performance
computing (HPC) system. This initial study was performed on a personal computer with an Intel
Core i7 7th generation, 12 GB RAM, Windows 10, running 64 bit R, on R version 3.6.0. Due to
longer runtimes, each different parameter value was only run once. Therefore, we use a bar graph
to represent the single value rather than the box plots from the previous section. The proportion
of differences is defined the same as in the four covariate case: the proportion of models that differ
from the exhaustive method sorted by lagset. Note that the number of possible models in the five
covariate case is 1,450, as opposed to 113 for the four covariate case. This is why we test larger
population sizes, as described in the following section.
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5.1.1 Population Size

Figure 13: Proportion of differences (box plot corresponding the left vertical axis) and runtime (blue circles
corresponding to right vertical axis) for the population sizes considered. glmulti default of 100 is bolded.

Using a population size of 20 with 5 covariates results in a very high proportion of differences. This
could be because with such a small population size the algorithm will only be able to test a small
percent of the total models at a time. The low runtime at a population size of 20 could be a result
of the algorithm converging to local optima, which is again likely because of the relatively small
number of models in each generation. We can see that the proportion of differences decreases to
essentially zero as population size increases. This could be because the genetic algorithm converges
to the exhaustive search as the population size approaches the total number of possible models.
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5.1.2 Immigration Rate

Figure 14: Proportion of differences (box plot corresponding the left vertical axis) and runtime (blue circles
corresponding to right vertical axis) for the immigration rates considered. glmulti default of 0.3 is bolded.

The immigration rate is positively correlated to runtime. Immigration introduces the highest
amount of variation in the population of models. Based on the runtime results, we can therefore
hypothesize that increased variability in the population of models increases runtime. This could
be because the increased variability in the models makes it harder to meet the deltaM and deltaB
stopping criterion. Larger immigration rates (and hence more variability in the population of
modes) also results in smaller proportion of differences. This could be because the increased
variability ensures that the algorithm does not converge to a local optima.
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5.1.3 Sexual Reproduction Rate

Figure 15: Proportion of differences (box plot corresponding the left vertical axis) and runtime (blue circles
corresponding to right vertical axis) for the sexual reproduction rate considered. glmulti default of 0.1 is
bolded.

Figure 15 shows that the proportion of differences and runtime is relatively constant across sexual
reproduction rate values in the five covariate case. Therefore, we consider the sexual reproduction
rate negligible. This is also seen in the four covariate case.

5.1.4 Mutation Rate

Figure 16: Proportion of differences (box plot corresponding the left vertical axis) and runtime (blue circles
corresponding to right vertical axis) for the mutation rate considered. glmulti default of 10−3 is bolded.
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As mutation rate increases, the proportion of differences decreases. The runtime experiences a
minimum around the default vale of 10−3. A good range to study further would be between 0.01
and 0.05.

5.1.5 Consecutive Value

Figure 17: Proportion of differences (box plot corresponding the left vertical axis) and runtime (blue circles
corresponding to right vertical axis) for the consecutive values considered. glmulti default of 5 is bolded.

Just as in the four covariate case, there is an obvious trend in both proportion of differences and the
runtime as the consecutive values increase. A higher consecutive value results in higher runtimes
because the genetic algorithm will have to go through more iterations before converging. The
default value is a suitable compromise.

5.2 Varying Two Parameters at a Time on a Personal Computer

In the previous section, we varied each parameter individually (one degree varying) to determine
the best range of parameter values to consider when varying two parameters at a time (pairwise
interactions). In this section, we discuss the results of these pairwise interactions using the informed
parameter ranges. This will reveal any potential interaction between the parameters. As previously
seen, changes in the sexual reproduction rate produced negligible differences, so it will not be studied
further.

5.2.1 Immigration Rates with Consecutive Values

We vary the immigration rate concurrently with the consecutive value to help us determine the
optimal value for both parameters. The color scales in Figure 18 shows the different values for both
the proportion of differences and the runtime difference. The runtime differences is defined as the
difference between the genetic algorithm and the exhaustive search, with positive values indicating
the genetic algorithm took longer to run than the exhaustive search. Each cell corresponds to the
same cell in the other plot (Fig. 18a and 18b) to easily compare the two.
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(a) Proportion of Differences (b) Runtime

Figure 18: The default values for the genetic algorithm is an immigration value of 0.3 and a consecutive value
of 5. The proportion of differences is the percentage of models that differ from the exhaustive models. The
runtime difference is the runtime of the genetic algorithm subtracted from the runtime from the exhaustive
method.

In this study using a personal computer, only the immigration rate and the consecutive value
were changed. Every other parameter value was left at the default. As an example of how these
heatmaps are useful, we can see that a consecutive value of 9 and a immigration value of 0.3 would
be preferred over using a consecutive value of 5 and an immigration value of 0.7. This is because
although the two sets of values result in the same proportion of differences, the runtime has a
significant increase when using the latter values. The optimal region in this parameter space is
between an immigration rate of 0.001 and 0.1 and a consecutive value of 9.

5.3 Varying Two Parameters at a time on an HPC System

The remaining parameter combinations are run on the NCAR high-performance computing system
(HPC) Cheyenne. Cheyenne has 145,152 processor cores, 4,032 computation nodes, and 313 TB of
total system memory. HPC systems allow for faster computation, and therefore we again perform
5 trials for each parameter combination. It should be noted that the results from Figure 18 would
not necessarily be the same if run on Cheyenne.

5.3.1 Population Size and Immigration Rate

First we vary population size and immigration rate values. Figure 19 shows heatmaps that display
both proportion of differences and runtime differences. We will see that all the parameter combi-
nations resulted in positive runtimes. This will be discussed more thoroughly in the Conclusion
section.
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(a) Proportion of Differences (b) Runtime

Figure 19: The default value for the genetic algorithm is an immigration value of 0.3 and a population size
of 100. The proportion of differences is shown on the left hand side and the difference in runtime from the
exhaustive search is shown on the right hand side. Lighter colors correspond to better results.

Here proportion of differences is defined as in previous sections. In the runtime heatmap, we plot the
average runtime with the standard deviation in parenthesis. We do not present standard deviation
for the proportion of differences, as there was very little variability (on the order of 10−3). Due
to the low number of trials and the high variability in runtimes, we list the individual runtimes in
Table 2.

Table 2: Individual runtimes for 5 trials of each combination of population size and immigration rate param-
eter values. These are the raw runtimes of each trial, meaning that the exhaustive time was not subtracted
from any of them. Population size corresponds to the y-axis and immigration rate corresponds to the x-axis.

For population size and immigration rate we can see that a higher population size and higher
immigration rate reduces the proportion of differences. With the goal of minimizing the runtime
and keeping a small proportion of differences, an optimal combination is a population size of

19



1000 and an immigration rate of 0.001. Even with this optimal parameter combination, it is still
significantly slower than the exhaustive search. There also is low variation in the runtime between
different trials for this parameter combination.

5.3.2 Immigration Rate and Mutation Rate

Figure 20 shows proportion of differences and runtime heatmaps for immigration rate and mutation
rate values. The individual runtimes for these parameter combinations are given in Table 3.

(a) Proportion of Differences (b) Runtime

Figure 20: The default values for the genetic algorithm is an immigration value of 0.3 and a mutation rate
of 10−3. The proportion of differences is shown on the left hand side and the difference in runtime from the
exhaustive search is shown on the right hand side. Lighter colors correspond to better results.

Table 3: Individual runtimes for 5 trials of each combination of immigration and mutation rate parameter
values. These are the raw runtimes of each trial, meaning that the exhaustive time was not subtracted from
any of them. Immigration rate corresponds to the y-axis and mutation rate corresponds to the x-axis.
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A mutation rate of 0.05 results in very low proportion of differences when combined with any
immigration rate value. The lowest runtime parameter combination is an immigration rate of 0.001
and a mutation rate of 10−2, and thus we chose these as the optimized values.

5.3.3 Population Size and Mutation Rate

Figure 21 shows the same heatmaps for population size and mutation rate. The individual runtimes
are given in Table 4.

(a) Proportion of Differences (b) Runtime

Figure 21: The default values for the genetic algorithm is a mutation rate of 10−3 and a population size of
100. The proportion of differences is shown on the left hand side and the difference in runtime from the
exhaustive search is shown on the right hand side. Lighter colors correspond to better results.
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Table 4: Individual runtimes for 5 trials of each combination of mutation rate and population size parameter
values. These are the raw runtimes of each trial, meaning that the exhaustive time was not subtracted from
any of them. Mutation rate corresponds to the y-axis and population size corresponds to the x-axis.

With a population size of 1000 there is both low runtime and proportion of differences, regardless
of the mutation rate value. A population size of 1000 and a mutation rate of 10−2 results in an
optimal runtime and proportion of differences.

5.3.4 Consecutive Values and Mutation Rate

Figure 22 shows the same heatmaps for consecutive values and mutation rate. The individual
runtimes are given in Table 5.
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(a) Proportion of Differences (b) Runtime

Figure 22: The default value for the genetic algorithm is a consecutive value of 5 and a mutation rate of
10−3. The proportion of differences is shown on the left hand side and the difference in runtime from the
exhaustive search is shown on the right hand side. Lighter colors correspond to better results.

Table 5: Individual runtimes for 5 trials of each combination of mutation rate and consecutive parameter
values. These are the raw runtimes of each trial, meaning that the exhaustive time was not subtracted from
any of them. Mutation rate corresponds to the y-axis and consecutive values correspond to the x-axis.

With a consecutive value of 1, the runtime decreases significantly compared to using a value of 5 or
9. As before we can see a higher mutation rate is associated with better proportion of differences.
We select a consecutive value of 1 and a mutation rate of 10−2 as the optimal values.
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5.3.5 Population Size and Consecutive Size

The sixth and final parameter combination that we tested was population size and consecutive
value. Both heatmaps and a table of the different runtimes (Fig. 23 and Table 6) were produced
for this parameter combination.

(a) Proportion of Differences (b) Runtime

Figure 23: The default value for the genetic algorithm is a consecutive value of 5 and a population size of
100. The proportion of differences is shown on the left hand side and the difference in runtime from the
exhaustive search is shown on the right hand side. Lighter colors correspond to better results.

Table 6: Individual runtimes for 5 trials of each combination of population size and consecutive parameter
values. These are the raw runtimes of each trial, meaning that the exhaustive time was not subtracted from
any of them. Population size corresponds to the y-axis and consecutive values correspond to the x-axis.

There are low runtimes and low proportion of differences for any consecutive value when using a
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population size of 1000. With a population size of 1000, the proportion of differences does not
increase much when using a consecutive value of 1 compared to a consecutive value of 5. Thus, a
good parameter combination would be a population size of 1000 and a consecutive value of 1.

5.3.6 Discussion of Results

Based on the pairwise studies above, we have selected the following parameter values as optimal
for the CO modeling application with five covariates.

Parameter Default 5 covariate values 4 covariate values

Population Size 100 1000 40

Immigration Rate 0.3 0.001 0.001

Sexual Reproduction Rate 0.1 no significant influence-default selected 0.1

Mutation Rate 0.001 0.01 0.2

Consecutive Iterations 5 5 2

Table 7: The defualt for each parameter and optimized values for both the 5 covariate and 4 covariate case.

Table 7 shows the optimized values that resulted from the study on Cheyenne (HPC system at
NCAR). It appears that on Cheyenne, the exhaustive method runs much faster than on a personal
computer relative to the genetic algorithm. Note that the results in Table 7 are optimized on an
HPC system and might be different for a personal computer.

We directly compare the optimized glmulti parameters to the default values with five covariate
models Figure 24.

Figure 24: Comparison of default glmulti parameters to optimized parameters.

The optimized parameters decrease both runtime and proportion of differences. The runtime de-
creased by an average of 1 hour and 3.6 seconds, and the proportion of differences decreased by an
average of 0.4%. It it interesting to note that the optimized genetic algorithm is still slower than the
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exhaustive search in an HPC environment. Again, these results might differ on a personal computer.

6 Conclusion

In the four covariate case, we successfully optimize the genetic algorithm so its runtime is lower
than the exhaustive method. Notably, the optimized population size (40) is much smaller than
the total number of possible models (113). The four covariate study is performed on a personal
computer. Therefore, the genetic algorithm with optimized parameters can serve as an intermediate
variable selection method between stepwise selection and the exhaustive search with four covariate
models. This is useful for researchers who do not have access to computing resources, as the genetic
algorithm runs faster than the exhaustive search without sacrificing significant model accuracy.

We perform our study for the five covariate case on the NCAR HPC system Cheyenne. As
in the four covariate case, the optimized genetic algorithm is faster and has a lower proportion of
differences than the default settings. That being said, the exhaustive method is faster than the
optimized genetic algorithm in this scenario. In the five covariate case, the optimized population
size (1000) was much closer to the total number of models (1450), which might indicate that the
genetic algorithm is trending towards the exhaustive search. As the population size increases, the
genetic algorithm becomes more similar to an exhaustive search. The exhaustive search seems to
outperform the genetic algorithm in an HPC environment, so it makes sense that the optimized
genetic algorithm parameters push the algorithm towards an exhaustive ‘search. While the runtime
of the optimized genetic algorithm does not fall between the stepwise and exhaustive methods,
these findings are still interesting and useful. Our results show that when using an HPC system,
an exhaustive search will likely outperform a stochastic variable selection technique in applications
with around one to two thousand possible models.
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