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Motivation
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The main source of carbon |
monoxide (CO) in the southern 408
hemisphere are large burn events
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This makes CO an useful proxy
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Fires are influenced by the change 408
in atmosphere and oceans
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Thus, the at.mosp.herlc C.:O _IS Figure 1: In plots (a) the 7 different regions are displayed along with
modeled using climate indices as the average CO. In plots (b) the 4 different climate indices are shown
predictor variables along with the standard deviation of CO.

These models can help countries
prepare for large burn events




Statistical Modeling

e We use multiple linear regression to model CO

Co(t) = p+ Z ak-Xxi(t - T)+ Z bij-xi(t - Ti)-x(t - 7))
k ij
- CO(t) is the CO anomaly in a given response region at time t
- x are the climate indices
- 7 is the lag value for each index in months

e The R package regClimateChem provides three variable selection algorithms
o  Exhaustive: always finds best possible model, but most computationally expensive
o  Stepwise: often fails to find the best possible model, but computationally inexpensive
o  Genetic: implemented as a possible middle-ground between exhaustive and stepwise

e We are performing an optimization study on the genetic algorithm to find the best balance between runtime
and accuracy



The Genetic Algorithm

e The genetic algorithm is implemented in
regClimateChem via the glmulti package
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: e A stochastic variable selection technique, it
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is based on probability and will potentially
produce different results each time you run it

Computing BIC Produce next
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\njodels e The algorithm converges to the best model
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e There are various parameters in glmulti that
affect how this modification process occurs
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: : The genetic algorithm contains many different
Gen.Et]'.C Algorlthm para?neters. Wge chose the followingyparameters
Optimization Study for our study.

The four covariate case
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Four covariate case

The x axis shows the different
parameter values, with the default
value in bold

There are two y axes, runtime and
proportion of differences

Varying the Population Size
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Varying the Sexual Reproduction Rate
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Varying the Mutation Rate
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Varying the Consecutive Sizes

Exhaustive Runtime = 7.18

Varying the Immigration Rate

Exhaustive Runtime = 7.18
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Results: four covariate case

Default Parameters vs Optimized Parameters
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*the parameters in red are more sensitive to change

e  When using all optimized values the run time decreases an average of 11.8%
e  The proportion of models different from the exhaustive search only differed by 0.28%



Testing the Five Covariate Case

We tested the same parameters on five covariate models
Varied parameters one at a time to estimate optimal range, then tested two parameters concurrently on

those ranges
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Future Work

e We are still in the process of varying two parameters at a time for the five covariate case

e We moved our study from my personal laptop to the HPC system (Cheyenne) at the National Center for
Atmospheric Research due to very long runtimes (20 hours)

e We hope to come up with a parameter combination that makes genetic algorithm fall between stepwise and
exhaustive
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