

Genetic Algorithm Optimization Study for Atmospheric Carbon Monoxide Models

Meera Duggal¹, William Daniels¹, Dorit Hammerling^{1,2}

Colorado School of Mines¹, National Center for Atmospheric Research²

Motivation

- In the Southern Hemisphere, the main source of atmospheric carbon monoxide (CO) are large burn events
- Therefore, CO can be used as a proxy for fires
- Predictive models for atmospheric CO concentrations can help countries prepare for large burn events

Figure 1: In plots (a) the 7 different regions are displayed along with the average CO In plots (b) the 4 different climate indices are shown along with the standard deviation of CO.

Introduction

 We use multiple linear regression to model atmospheric CO

$$CO(t) = \mu + \sum_{k} a_k \cdot \chi_k(t - \tau_k) + \sum_{i,j} b_{ij} \cdot \chi_i(t - \tau_i) \cdot \chi_j(t - \tau_j)$$

- CO(t) is the CO anomaly in a given response region at time t
- χ are the climate indices
- $-\tau$ is the lag value for each index in months
- The R package regClimateChem provides three variable selection algorithms:
- Exhaustive: Finds the best model, but has a long runtime
- Genetic: A middle ground between stepwise and exhaustive
- Stepwise: Very fast, but finds the best model least often
- We performed an optimization study to optimize both model accuracy and runtime in the genetic algorithm

The Genetic Algorithm

- A stochastic variable selection technique
- Maintains a population of models throughout the algorithm
- Three different model modification techniques are used to produce new generations
- A stopping criterion is checked after each new generation is produced

Figure 2: Flow of the Genetic Algorithm

Genetic Algorithm Optimization Study

The genetic algorithm is implemented in regClimateChem via the glmulti package. It contains hyperparameters. We have chosen to study the following hyperparameters, varying them one at a time:

Parameter	Default	Values Studied
Population Size	100	5, 20, 40, 60, 80, 100
Mutation Rate	0.001	1e-05, 0 .001, 0.2
Sexrate	0.1	0.001, 0.1, 0.7
Immigration	0.3	0.001, 0.3, 0.7
Consecutive	5	1, 2, 3, 4, 5

Table 1: Values tested for each hyperparameter

Optimization Results

Figure 3: The x axis shows the different hyperparameter values, with the default value in bold. There are two y axes, runtime and proportion of differences The proportion of differences is the percentage of models that differ from the exhaustive models, over the total models.

Discussion of Results

- The optimized hyperparameters are:
- population size = 40
- mutation rate = 0.2
- sexual reproduction rate = 0.001
- immigration rate = 0.001
- consecutive = 2
- The hyperparameters in red are more sensitive to change compared to the other hyperparameters
- Comparison of results between the default and all optimized hyperparameters:

Figure 4: Comparison of using default hyperparameter values and optimized hyperparameter values.

- When using all optimized values the run time decreased an average of 11.8%
- Compared to the default hyperparameters the model quality doesn't decrease much

Future Work

- Testing models with more covariates
- Testing these findings on larger models which will potentially make a larger impact on runtime
- Varying multiple hyperparameters at a time
- Finding the overall optimal solution by accounting for interactions between hyperparameters

References

- [1] R. R. Buchholz, D. Hammerling, H. M. Worden, M. N. Deeter, L. K. Emmons, D. P. Edwards, and S. A.
- Links between carbon monoxide and climate indices for the southern hemisphere and tropical fire regions.
- Journal of Geophysical Research: Atmospheres, 123, 2018.
- [2] P. Simonson and D. Hammerling.

 Refactoring data-driven model selection code for improvements in interpretability, generality, and computational expense.
- [3] V. Calcagno and C. de Mazancourt.

NCAR Technical Notes, 2018.

glmulti: An R package for easy automated model selection with (generalized) linear models. *Journal of Statistical Software*, 34(12):29, 2010.