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Motivation
• In the Southern Hemisphere, the main source of
atmospheric carbon monoxide (CO) are large burn
events

• Therefore, CO can be used as a proxy for fires

• Predictive models for atmospheric CO concentrations
can help countries prepare for large burn events
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Figure 1. Boxes in (a) define the regions of interest and are overplotted on a map of average September to December
total column CO from Measurements of Pollution in The Troposphere V7-thermal infrared between 2001 and 2016. Note
that we select only retrievals over land within these boundaries. MSEA = Maritime SEA; NAus = North Australasia;
SAus = South Australasia; CSAf = Central Southern Africa; SSAf = South Southern Africa; CSAm = Central South America;
SSAm = Southern South America. The base plot in (b) is standard deviation of total column CO that corresponds to (a),
overplotted in red boxes that define regions of the sea surface temperature climate indices, TSA, DMI, and Niño3.4.
White arrows schematically depict the displacement of westerly winds associated with the atmospherically defined
climate index, SAM. Climate indices are described in section 2.2. TSA = Tropical South Atlantic; DMI = Dipole Mode
Index; SAM = Southern Annular Mode.

are described in Deeter et al. (2017). MOPITT products are publicly available through several repositories
linked via http://terra.nasa.gov/about/terra-instruments/mopitt or https://www2.acom.ucar.edu/mopitt.

The stable systematic bias found for the MOPITT total column product makes it well suited for analyzing
long time series (Deeter et al., 2017). In order to reduce systematic and random error, we select daytime,
land-only retrievals from the thermal infrared (TIR) product (MOPITT Science Team, 2013). Daytime retrievals
have higher sensitivity to CO due to higher thermal contrast compared with nighttime retrievals (Deeter et al.,
2007). Restricting analysis to land-only scenes minimizes the effect of different retrieval sensitivity between
land and water scenes. The TIR product has lower random error compared to the near-infrared or multispec-
tral products (Deeter et al., 2014) and similar sensitivity as the multispectral product to total column CO from
large-scale fires. Averaging over large areas and month time scales further reduces random error to negligi-
ble amounts. We find that spatial averages over large areas, such as the regions chosen in this study, produce
equivalent CO timeseries and anomalies for TIR and multispectral products (not shown). Therefore, while we
only analyze the TIR product, results will translate to the multispectral product.

For each region of interest, a spatial and climatological average of monthly total column CO between 2001
and 2016 is determined and subtracted from monthly average values to produce a time series of monthly CO
anomalies. The anomaly data sets developed and used in this study are publicly available through the National
Center for Atmospheric Research (NCAR) Research Data Archive (https://rda.ucar.edu/datasets/ds682.0, doi:
10.5065/D61N7ZX4).
2.1.1. Selected Regions
We investigate IAV in CO for four main biomass burning regions in the tropics and Southern Hemisphere:
Maritime SEA (10–10∘N, 90–160∘E), Australasia (50–10∘S, 110–180∘E), southern Africa (40–10∘S, 0–60∘E)
and South America (60–5∘S, 80–32∘W; Figure 1). The latter three regions required splitting into subregions in
order to account for different CO variability patterns within each subregion. In general, we split these regions
into tropical and temperate regions at 25∘S. While the tropical regions tend to have more biomass burning
than the temperate ones, temperate regions are more populated and air quality has a greater potential for
impacts on human health.

Australasia is split into two regions, approximately into tropical (North Australasia: 25–10∘S, 110–180∘E) and
temperate (South Australasia: 50–25∘S, 110–180∘E) subregions. The frequency of large fires is substantially
higher in the tropical subregion compared to the temperate subregion (Russell-Smith et al., 2007), and peak
fire seasons differ between the subregions (Langmann et al., 2009; Russell-Smith et al., 2007). Additionally,
the majority of agricultural activities are found below 25∘S (Bryan et al., 2016) as well as more than 85%
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Figure 1: In plots (a) the 7 different regions are displayed along with
the average CO In plots (b) the 4 different climate indices are shown
along with the standard deviation of CO.

Introduction
•We use multiple linear regression to model
atmospheric CO

CO(t) = μ+
∑︁
k

ak·χk(t - τk)+
∑︁
i,j

bij·χi(t - τi)·χj(t - τj)

– CO(t) is the CO anomaly in a given response region at time t
–𝜒 are the climate indices
– 𝜏 is the lag value for each index in months

• The R package regClimateChem provides three
variable selection algorithms:
– Exhaustive: Finds the best model, but has a long runtime

–Genetic: A middle ground between stepwise and exhaustive

– Stepwise: Very fast, but finds the best model least often

•We performed an optimization study to optimize both
model accuracy and runtime in the genetic algorithm

The Genetic Algorithm

•A stochastic variable selection technique
•Maintains a population of models
throughout the algorithm
• Three different model modification
techniques are used to produce new
generations
•A stopping criterion is checked after each
new generation is produced

Figure 2: Flow of the Genetic Algorithm

Genetic Algorithm Optimization
Study

The genetic algorithm is implemented in
regClimateChem via the glmulti package. It
contains hyperparameters. We have chosen
to study the following hyperparameters,
varying them one at a time:

Table 1: Values tested for each hyperparameter

Optimization Results

Figure 3: The x axis shows the different hyperparameter
values, with the default value in bold. There are two y
axes, runtime and proportion of differences The
proportion of differences is the percentage of models that
differ from the exhaustive models, over the total models.

Discussion of Results
• The optimized hyperparameters are:
– population size = 40
–mutation rate = 0.2
– sexual reproduction rate = 0.001
– immigration rate = 0.001
– consecutive = 2

• The hyperparameters in red are more sensitive to
change compared to the other hyperparameters
• Comparison of results between the default and
all optimized hyperparameters:

Figure 4: Comparison of using default hyperparameter
values and optimized hyperparameter values.
•When using all optimized values the run time decreased an
average of 11.8%
• Compared to the default hyperparameters the model
quality doesn’t decrease much

Future Work
• Testing models with more covariates
– Testing these findings on larger models which will
potentially make a larger impact on runtime

•Varying multiple hyperparameters at a time
– Finding the overall optimal solution by accounting for
interactions between hyperparameters
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