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Abstract

Carbon monoxide (CO) is a major pollutant, impacting air quality and contributing to the
greenhouse effect. Buchholz et al. [1] used a multiple linear regression model to link CO anoma-
lies in the atmosphere to variability in the climate. Measurements of total column CO were
retrieved from the Measurements Of Pollution In The Troposphere (MOPITT) instrument on-
board the Terra satellite. Anomalies generated by these measurements are used as the response
variable in this model. Climate mode indices represent regional variability in the climate, and
these indices at various time lags are used as the predictor variables. Buchholz et al. [1] per-
formed this analysis in MATLAB using serial algorithms in non-functionalized scripts. Simonson
et al. [2] refactored the MATLAB codebase, improving both code interpretability and generality
and adding parallelization options. In this technical note, we present further updates to the
codebase used in the atmospheric CO analysis from Buchholz et al. [1]. These updates stem
from four primary objectives. First, transfer the codebase into an R package that is available
to researchers without a MATLAB license. Second, allow for a single climate index to appear in
the model multiple times with different lag values. Third, implement an exhaustive variable
selection algorithm. Finally, improve upon the non-exhaustive variable selection algorithm im-
plemented in the MATLAB code. These updates are discussed, and the accuracy and timing of
the new variable selection algorithms are compared.

Keywords: carbon monoxide, climate chemistry, statistical models, multiple linear regression,
variable selection, exhaustive search, genetic algorithm, stepwise selection, timing study
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1 Introduction

1.1 Carbon Monoxide Variability

Carbon monoxide (CO) is a major pollutant. In the presence of sunlight, CO is a precursor to
tropospheric ozone, a gas with negative health impacts for both humans and vegetation. Further-
more, CO is a primary sink for hydroxyl radicals in the atmosphere that would otherwise react
with methane and carbon-containing compounds. Therefore, CO in the atmosphere can indirectly
increases the concentration of methane and ozone, two powerful greenhouse gasses [3].

Measurements of total column CO used in Buchholz et al. [1] and this study are retrieved from
the Measurements Of Pollution In The Troposphere (MOPITT) instrument onboard the Terra satel-
lite. Data from the MOPITT instrument is publicly available at http://terra.nasa.gov/about/terra-
instruments/mopitt. To reduce systematic and random error, we select daytime, land-only retrievals
from the thermal infrared product. See Buchholz et al. [1] for details. CO anomalies are created
by subtracting a spatial and climatological average of monthly total column CO from 2001 to 2016
from monthly averaged values. Figure 1 shows the measured CO total column and the generated
anomaly in Maritime Southeast Asia used in Buchholz et al. [1]. The regions studied in this report
will be discussed in detail later in this section.

Figure 1: Time series of total column CO and generated anomaly in Southeast Asia. The grey
dots are total column CO measurements from MOPITT, and the black line is the seasonal trend
in total column CO. CO anomalies are created by subtracting a spatial and climatological average
of monthly total column CO from 2001 to 2016 from monthly average values.

Atmospheric CO is directly produced by incomplete combustion and indirectly produced from
hydrocarbon oxidation. These reactions are abundant during large burn events, making fires a
major source of atmospheric CO [4]. In fact, fires are the primary source of CO variability in the
Southern Hemisphere [5]. Therefore, atmospheric CO serves as an easily measurable proxy for fires
during fire season.
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Table 1: Climate mode indices used in this study with links to their sources.

Climate Mode Associated Index Source

ENSO Niño 3.4 www.cpc.ncep.noaa.gov/data/indices/
IOD Dipole Mode Index (DMI) stateoftheocean.osmc.noaa.gov/sur/ind/dmi.php
TSA Tropical South Atlantic (TSA) www.cpc.ncep.noaa.gov/data/indices/
AAO Southern Annular Mode (SAM) www.cpc.ncep.noaa.gov/products/precip/

CWlink/daily ao index/aao/aao.shtml

The intensity and size of fires are closely related to the amount, type, and dryness of available
fuel. These factors respond closely to variability in the climate [6]. Climate modes, such as the El
Niño-Southern Oscillation, are often used to predict regional climate variability, like rainfall and
drought [7, 8]. Climate indices, such as the Nino 3.4 index, are useful metrics for describing the
aperiodic variability due to climate modes. Buchholz et al. [1] used indices from four major climate
modes to model atmospheric CO anomalies in the Southern Hemisphere. The four indices used in
Buchholz et al. and this study are listed in Table 1, as well as the source of each index. Climate
mode indices are made publicly available by NOAA. Figure 2 shows the climate indices over the
dates of interest in our study.

Figure 2: Climate indices over the dates of interest in our study. Positive modes are plotted in red,
and negative modes are plotted in blue.
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The CO anomalies in Buchholz et al. [1] were aggregated into seven biomass burning regions,
and a separate model was created for each region. Figure 3 (a) shows these response regions over
the average total column CO from 2001 to 2016. Figure 3 (b) shows the climate indices used in
this study over the standard deviation of total column CO from 2001 to 2016 [1].

Journal of Geophysical Research: Atmospheres 10.1029/2018JD028438

Figure 1. Boxes in (a) define the regions of interest and are overplotted on a map of average September to December
total column CO from Measurements of Pollution in The Troposphere V7-thermal infrared between 2001 and 2016. Note
that we select only retrievals over land within these boundaries. MSEA = Maritime SEA; NAus = North Australasia;
SAus = South Australasia; CSAf = Central Southern Africa; SSAf = South Southern Africa; CSAm = Central South America;
SSAm = Southern South America. The base plot in (b) is standard deviation of total column CO that corresponds to (a),
overplotted in red boxes that define regions of the sea surface temperature climate indices, TSA, DMI, and Niño3.4.
White arrows schematically depict the displacement of westerly winds associated with the atmospherically defined
climate index, SAM. Climate indices are described in section 2.2. TSA = Tropical South Atlantic; DMI = Dipole Mode
Index; SAM = Southern Annular Mode.

are described in Deeter et al. (2017). MOPITT products are publicly available through several repositories
linked via http://terra.nasa.gov/about/terra-instruments/mopitt or https://www2.acom.ucar.edu/mopitt.

The stable systematic bias found for the MOPITT total column product makes it well suited for analyzing
long time series (Deeter et al., 2017). In order to reduce systematic and random error, we select daytime,
land-only retrievals from the thermal infrared (TIR) product (MOPITT Science Team, 2013). Daytime retrievals
have higher sensitivity to CO due to higher thermal contrast compared with nighttime retrievals (Deeter et al.,
2007). Restricting analysis to land-only scenes minimizes the effect of different retrieval sensitivity between
land and water scenes. The TIR product has lower random error compared to the near-infrared or multispec-
tral products (Deeter et al., 2014) and similar sensitivity as the multispectral product to total column CO from
large-scale fires. Averaging over large areas and month time scales further reduces random error to negligi-
ble amounts. We find that spatial averages over large areas, such as the regions chosen in this study, produce
equivalent CO timeseries and anomalies for TIR and multispectral products (not shown). Therefore, while we
only analyze the TIR product, results will translate to the multispectral product.

For each region of interest, a spatial and climatological average of monthly total column CO between 2001
and 2016 is determined and subtracted from monthly average values to produce a time series of monthly CO
anomalies. The anomaly data sets developed and used in this study are publicly available through the National
Center for Atmospheric Research (NCAR) Research Data Archive (https://rda.ucar.edu/datasets/ds682.0, doi:
10.5065/D61N7ZX4).
2.1.1. Selected Regions
We investigate IAV in CO for four main biomass burning regions in the tropics and Southern Hemisphere:
Maritime SEA (10–10∘N, 90–160∘E), Australasia (50–10∘S, 110–180∘E), southern Africa (40–10∘S, 0–60∘E)
and South America (60–5∘S, 80–32∘W; Figure 1). The latter three regions required splitting into subregions in
order to account for different CO variability patterns within each subregion. In general, we split these regions
into tropical and temperate regions at 25∘S. While the tropical regions tend to have more biomass burning
than the temperate ones, temperate regions are more populated and air quality has a greater potential for
impacts on human health.

Australasia is split into two regions, approximately into tropical (North Australasia: 25–10∘S, 110–180∘E) and
temperate (South Australasia: 50–25∘S, 110–180∘E) subregions. The frequency of large fires is substantially
higher in the tropical subregion compared to the temperate subregion (Russell-Smith et al., 2007), and peak
fire seasons differ between the subregions (Langmann et al., 2009; Russell-Smith et al., 2007). Additionally,
the majority of agricultural activities are found below 25∘S (Bryan et al., 2016) as well as more than 85%

BUCHHOLZ ET AL. 9788

Figure 3: Boxes in (a) define the seven biomass burning regions used in this study. Boxes in (b)
define regions used to create the TSA, DMI, and NINO climate mode indices. The white arrows in
(b) depict shifting of the westerly winds associated with the SAM climate mode index. The map
in (a) depicts average total column CO from September to December between 2001 and 2016. The
map in (b) depicts the corresponding standard deviation to the averages in (a). This map was
taken from the Buchholz et al. [1] manuscript.

1.2 Statistical Model

A multiple linear regression model with interactions was used in Buchholz et al. [1] to model CO
anomalies. The de-seasonalized CO anomaly in each region was used as the response, and the four
climate mode indices and their interactions were used as the covariates. Since these models focus
on prediction, the climate mode indices were lagged at values ranging from from 1 to 8 months.

For a given region, the form of the regression model with interactions is shown in equation 1.

CO(t) = µ+
∑
k

ak · χk(t− τk) +
∑
i,j

bij · χi(t− τi) · χj(t− τj) (1)

In equation 1, CO(t) is the CO anomaly at time t, µ is a constant mean displacement, ak and
bij are coefficients, χ are the climate indices, τ is the lag value for each index in months, and k,i,
and j iterate over the number of climate modes used in the analysis. Each climate index can take
a different lag value, but once a lag is selected for a main effect, all interactions of that term use
the same lag value.

The variable selection and analysis in Buchholz et al. [1] was performed in MATLAB using serial
algorithms implemented in non-functionalized scripts. A series of nested for loops was used to
iterate through all possible combinations of lag values. At each combination, stepwise selection
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was used to find the best model for that set of lag values. After all sets of lag values had been
considered, the resulting best models would be directly compared. The best of these models (and
the corresponding lag values) would then be selected as the predictive model for that region.

The Bayesian Information Criterion (BIC) was used in Buchholz et al. [1] to perform variable
selection, as it selects models with a focus on prediction. The BIC is defined in equation 2.

BIC = ln(n)k − 2ln(L̂) (2)

In equation 2, n is the number of observations in the dataset used to train the model, k is the
number of covariates in the model, and L̂ is the maximized value of the likelihood function for the
model.

These models are intended for prediction, so it is desirable to have low model complexity, or a
small number of covariates. This way the models capture the general trend in the climate mode
data without overfitting to the noise. However, we do not want our models to be so simple that
they ignore important features in the climate mode data. Therefore, we use the BIC as our variable
selection criterion, as it balances both fit and model complexity with an emphasis on minimizing
complexity.

A smaller BIC value corresponds to a better model. Therefore, the first term in the BIC
equation can be though of as a punishment for model complexity, as it grows with the number of
covariates. In fact, the ln(n) coefficient makes the BIC a particularly harsh criterion in terms of
model complexity, as n is often quite large. The second term in the BIC equation can be thought
of as a measurement of fit. Comparatively, models with larger maximized likelihood values fit the
data better than models with smaller maximized likelihood values. Therefore, a good fit makes the
second term in the BIC equation large, reducing the overall BIC value for that model.

Note that the BIC value of a given model is meaningless on its own, as the weight between
complexity and fit is arbitrary. The BIC serves only as a comparison between different models.

1.3 Codebase Refactoring

Simonson et al. [2] refactored the initial MATLAB codebase, yielding three significant outcomes.
First, data structures were implemented to increase code interpretability. Second, the codebase was
generalized to work with more flexible periods of interest, more extensive lag space matrices, and
any number of climate indices. Third, the codebase was parallelized using the MATLAB Parallel

Computing Toolbox.
The refactored code in Simonson et al. [2] eliminates the need for nested for loops during the

variable selection process. Instead, variable selection is broken up into the following steps. First, a
range of lag values for each index is specified by the user. Each possible combination of lags is then
pre-computed and saved in a grid, which is called the lag space matrix. Each entry of the lag space
matrix contains one possible lag value for each climate mode index, which is called a lagset. A
single for loop can then be used to consider all combinations of lag values by iterating through the
lag space matrix, making parallelization possible. Within this loop, variable selection is performed
for each lagset using stepwise selection with BIC as the criterion. After considering all lagsets, the
best model and corresponding lagset is selected as the predictive model for that region.

This refactoring provided vast improvements in both usability and efficiency of the MATLAB

codebase. However, there were still some limitations in the codebase left unaddressed:

• MATLAB is a fairly expensive software package. Researchers wishing to verify or expand upon
the analysis in Buchholz et al. [1] might not have access to MATLAB or the MATLAB Parallel

Computing Toolbox.
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• The regression algorithm only searched for models containing one lag per climate mode. In
other words, the models could only accommodate one main term per climate mode. One
way of exploring more complex relationships between climate and CO would be to include
multiple lags of a single mode. This functionality was not built into the Simonson et al. [2]
codebase.

• Stepwise selection was the only regression algorithm implemented. This approach works well
in many applications. However, stepwise selection is not an exhaustive variable selection algo-
rithm, meaning that it does not explicitly compute a criterion value for every possible model.
Therefore, it may not always find the best model. An exhaustive algorithm, on the other
hand, will always find the best model. In small problems with few predictor variables, the
computational benefit of a non-exhaustive search over an exhaustive search is not significant.

• Stepwise selection is often able to find good models, but there are other non-exhaustive search
algorithms that do a better job. For instance, genetic search algorithms are often able to find
better models than stepwise selection, but they do not scale as well to larger parameter
spaces. The Simonson et al. [2] codebase only contained a stepwise selection algorithm,
without providing other non-exhaustive search options.

To address these issues, the codebase has again been refactored and updated. The following
items were implemented to address the limitations listed above. These items will be discussed in
detail in Section 2 of this technical note.

• The code was rewritten in the open source R package regClimateChem.

• The lag space matrix was generalized to include multiple lags of a single climate mode.

• An exhaustive search option was added.

• An additional non-exhaustive search option was added. The user can now select between a
genetic algorithm and stepwise selection.

The remainder of this report is as follows. Section 2 describes improvements made to the
codebase since the Simonson et al. [2] refactoring. Section 3 discusses the default hyperparameter
values for each variable selection algorithm implemented in the regClimateChem package. Section
4 includes a quick note on the scalability of the variable selection algorithms in regClimateChem.
Section 5 compares the accuracy of the new variable selection algorithms. In this report, model
accuracy refers to each algorithm’s ability to find the best possible model for a given lagset. Section
6 compares the run times of the variable selection algorithms. In Section 7, the best model in each
response region is reported. We conclude our findings in Section 8. Finally, an updated description
of the regClimateChem configuration file is found in appendix A, and instructions for downloading
the regClimateChem R package are found in appendix B.

2 Codebase Updates

2.1 regClimateChem R Package

The MATLAB codebase written for Buchholz et al. [1] and refactored in Simonson et al. [2] has been
rewritten as the R package regClimateChem. This package is available on GitHub. See appendix
B for instructions on downloading.
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The R package utilizes several other open source R packages:

• foreach. Available on CRAN. Used for executing loops in parallel.

• doParallel. Available on CRAN. Serves as the parallel backend for the foreach package.

• gtools. Available on CRAN. Contains various tools for data manipulation. Required for the
combinations function, which is used to create the lag space matrix.

• glmulti. Available on CRAN. Package containing exhaustive and genetic regression algo-
rithms. See [9] for details.

• rJava. Available on CRAN. Required for glmulti. Note that rJava requires Java and the Java
Runtime Environment.

• MASS. Available on CRAN. Required for stepwise selection.

2.2 Multiple Lags of One Mode

In the MATLAB code, the regression algorithm only searched for models containing at most one lag
per climate mode. In other words, each climate mode could only appear once as a main term in
the generated models. These models are able to explain much of the CO variability, but more
complex models (or models with more terms) have potential value. For instance, the ENSO 3.4
index is larger in magnitude and less noisy than the other indices. Models containing two ENSO
terms lagged at different values might be better able to predict CO concentrations than models
that only contain one ENSO term. This is because ENSO may have different lags that separately
impact vegetation growth and fuel dryness. The combination of these two time scales could provide
additional predictive power over models that only take into account a single lag.

The new R code has been generalized to allow for multiple lagged terms of a single climate
mode. This was done via generalizations to the lag space matrix. In the MATLAB code, the lag space
matrix was generated by simply taking the Cartesian product of the user specified lag limits. The
remainder of this section describes the generalized algorithm implemented in regClimateChem.

First, the user specifies: 1) the number of lags allowed per climate mode, and 2) the minimum
and maximum lag values allowed for each climate mode. These values are set in the configuration
file, which is described in detail in Appendix A. At this time, all of the lags of a given climate
mode have the same minimum and maximum values. In future package iterations, there could be
options for restricting these values for certain lags. However, at this time we want the regression
algorithms to search for the best possible model with as few restrictions as possible. With these
values defined, the following function call is made for each climate mode:

combination.list <- combinations(v = min.lag:max.lag,

n = max.lag - min.lag + 1,

r = num.terms)

Here min.lag and max.lag are the minimum and maximum lag values allowed for each climate
mode and num.terms is the number of lags allowed per climate mode. These values are used to
compute the following quantities. The source vector, v, is a vector of lag values starting with the
minimum lag value and ending with the maximum lag value. The length of the source vector, n, is
simply the number of lag values present in the source vector. The length of the target vector, r, is
the number of lag values present in the target vector. The target vector is the desired output of the
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combinations function. That is, the combinations function will create all possible combinations
of length r using values from the source vector. In this way, the combinations function defines all
possible lag combinations for a given climate mode.

For instance, if the user specifies that only one lag is allowed per climate mode (ie. the length
of the target vector is 1), then by default there are 8 choose 1 possible combinations. In this case,
the output of the combinations function would be:

[1 ; 2 ; · · · ; 8]

If instead the user specifies that two lags are allowed per climate mode (ie. the length of the
target vector is 2), then by default there are 8 choose 2 possible combinations. In this case, the
output of the combinations function would be:

[1, 2 ; 1, 3 ; · · · ; 2, 3 ; 2, 4 ; · · · ; 6, 7 ; 6, 8 ; 7, 8]

It is important to emphasize that we do not want models containing multiple terms of a single
climate mode with the same lag value. These terms would be identical, resulting in perfectly linearly
dependent covariates. Therefore, there are no target vectors containing identical lag values, such
as 1, 1 or 2, 2. These vectors would result in a single index being lagged twice at the same value.

After generating a combination list for each climate mode, the lists are spliced together in such a
way that all possible combinations of lag values are represented. This is achieved with the following
loop structure:

for (a in 1:nrow(combination.list[[1]])){

for (b in 1:nrow(combination.list[[2]])){

for (c in 1:nrow(combination.list[[3]])){

for (d in 1:nrow(combination.list[[4]])){

this.row <- cbind(t(combination.list[[1]][a,]),

t(combination.list[[2]][b,]),

t(combination.list[[3]][c,]),

t(combination.list[[4]][d,]))

lagset.matrix <- rbind(lagset.matrix, this.row)

}

}

}

}

In this code segment, each element in the combination.list data structure is the combination
list for a given climate mode. This generalized method pregenerates the lag space matrix, which is
more computationally intensive up front but lends itself well to parallelization when doing variable
selection. When each lagset is pre-computed, a single loop can be used to iterate through all possible
lag value combinations. Within this loop, each iteration is independent of the others, making it
suitable for parallelization. This is a desirable feature, as scenarios with many predictor variables
or many observations will quickly become infeasible on a single processor.
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Note, however, that while pregeneration of the lag space matrix is feasible for this carbon
monoxide application, it will become increasingly costly for applications with more predictor vari-
ables. For instance, considering four climate mode indices and lag values from one to eight months,
the lag space matrix is a 4096×4 matrix taking up 65 KB. However, with five climate mode indices
(or two lags of a one mode) and lag values from one to eight months, the lag space matrix becomes
14336 × 5 matrix taking up 286 KB. So for applications with hundreds of predictor variables, pre-
generation of the lag space matrix would require massive amounts of memory. This problem is not
addressed in this codebase update, as we do not anticipate that the CO modeling application will
require an unreasonable amount of covariates. Even including one or two dozen covariates in the
predictive CO models would be possible with this pregeneration method.

Also note that while regClimateChem does not impose a limit on the number of lags allowed
for a given index, it may not be wise to use more than 2 or 3. This is because climate mode indices
are time series data, meaning that they have an auto-correlation structure. Including too many
lags of a single index could result in highly correlated covariates, which is undesirable in regression
modeling. The optimal number of lags for a single index is an ongoing research topic.

2.3 Exhaustive Search Option

In the MATLAB code, stepwise selection was the only variable selection algorithm implemented. This
is a non-exhaustive search, meaning that it does not check every possible model. The benefit of
non-exhaustive searches (like stepwise selection) is that significant computation time can be saved
for large problems (like a large parameter space). The drawback is that for larger problems, non-
exhaustive methods are increasingly likely to miss the best possible model. However, for smaller
problems (like the CO application with only four covariates), the difference in computation time
between an exhaustive and non-exhaustive search is negligible. Therefore, there is no drawback to
using an exhaustive search for the CO application with only four covariates.

In regClimateChem, an exhaustive search algorithm is implemented via the glmulti package.
This algorithm considers every possible model for each lagset. It computes the BIC value for
each model and selects the model with the best criterion value. Therefore, the exhaustive search
always finds the best possible model. To perform an exhaustive search, the user simply specifies
this in the configuration script. Section 3 discusses the default parameter values of the exhaustive
search. Sections 5 and 6 analyze the accuracy and computation time of the new variable selection
algorithms.

2.4 Non-Exhaustive Search Options

With more covariates, however, a non-exhaustive search option is often required. This is because
the number of possible models grows exponentially with the number of covariates. As in the
MATLAB codebase, regClimateChem provides a stepwise selection option implemented via the MASS
package. This algorithm operates under the same general principles as the stepwise algorithm in
MATLAB. The algorithm begins with a base model. It then begins an iterative process where it checks
all models created by either adding or removing a single covariate. If one of these models improves
the information criterion, then that model is selected and the algorithm continues. If none of the
new models improve the information criterion, then the algorithm stops and the current model
is used. Section 3 discusses the default parameter values used for both the stepwise algorithm
implemented in regClimateChem as well as the Simonson et al. [2] MATLAB codebase.

In addition to stepwise selection, regClimateChem provides a genetic (or stochastic) variable
selection algorithm implemented via the glmulti package. Sections 5 and 6 will show that the genetic
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algorithm is better than the stepwise algorithm at finding the best model in the cases studied here,
but is significantly slower. The user can decide which algorithm to use based on the size of their
parameter space. The remainder of this subsection describes the genetic algorithm [9].

The genetic algorithm maintains a “population” of models that is smaller than the total number
of possible models. Future “generations” of the population are produced by modifying the “parent”
models from the current generation to create “children” models in the next generation. There are
three different types of modification implemented in the glmulti package:

1. Asexual Reproduction. The child model is a product of a single parent model. Each possible
predictor term has a chance of “mutating.” In this CO modeling application, the climate
mode indices at a given lag value and their interactions are the predictor terms. If a term
mutates, then its role in the child model is the opposite of its role in the parent model. That
is, if a mutating term was included in the parent model, then it will not be included in the
child, and vise versa. If a term does not mutate, then it has the same role in the child model
as in the parent model.

2. Sexual Reproduction. Two children models are produced from two parent models. The terms
included in the children model are selected randomly from both parents. After the children
models are formed, they both undergo asexual reproduction. That is, each term has a chance
of mutating after the parent models have been combined.

3. Immigration. A child model produced by immigration is completely randomized. Each possi-
ble predictor term is either included or not included in the child model with equal probability.

The genetic algorithm ensures that future generations are more likely to contain models with
better criterion values. This is achieved by biasing the selection of parent models. Models in the
current generation with a better criterion value are more likely to be selected as parent models
when creating the next generation. That is, better models are more likely to be used to create the
next population of models [9]. This way the population of models converges to one containing the
best possible model.

The genetic algorithm stops after a set number of population iterations without significant
improvement. Specifically, it examines the best value of the criterion in the population and the
average value of the criterion in the population. When both of these values stop improving by more
than a set threshold, the algorithm stops.

The degree to which the three modification methods alter the children models are ranked from
largest alteration to smallest alteration as follows: immigration, sexual reproduction, asexual re-
production. The immigration method in particular is meant to drastically change the child model.
This introduces vastly different models into subsequent populations, which helps to prevent the
algorithm from getting stuck at local extrema of the selection criteria.

The rate at which each of these three modification methods occur can be altered. In regClimateChem,
the rates are set so that the genetic algorithm is more conservative. That is, the immigration rate
is higher than the default and the stopping criterion is more strict. This was done to ensure
that the genetic algorithm finds the best possible model in most situations, at the expense of
rapid convergence. Section 3 discusses the default parameter values of the genetic algorithm in
regClimateChem.

Sections 5 and 6 provide a detailed comparison of the genetic algorithm implemented in R,
the exhaustive search implemented in R, the stepwise search implemented in R, and the stepwise
search implemented in the Simonson et al. [2] MATLAB codebase. Specifically, Section 5 compares
the ability of these algorithms to find the best model, and Section 6 compares the runtime of each
algorithm.
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3 Default Parameter Settings

3.1 Exhaustive Search

The exhaustive search in regClimateChem is implemented using the glmulti package. The exhaus-
tive search in the glmulti package simply considers all non-redundant model formulas. It does not
approximate the exhaustive search with a branch-and-bound algorithm or a simulated-annealing
algorithm. Therefore, there are no tuning parameters associated with this search technique.

3.2 Stepwise Selection

Stepwise selection in regClimateChem is implemented using the stepAIC function from the MASS
package. The following list defines the stepAIC parameters, their default values, and the values
used in regClimateChem.

• object. This is the initial model that stepwise selection will be performed on. In regClimateChem,
the full model is supplied as the stepAIC object.

• scope. This defines the range of models examined in the stepwise search. The user can
provide upper and lower lists, containing terms that will always be included or that will
never be included in the model, respectively. If no user input is supplied, then the object
parameter will be used as the upper limit on the models. In regClimateChem, no additional
scope parameters are provided. Since the full model is supplied as the object parameter, this
means that no restrictions are placed on the models considered during the stepwise selection.

• scale. This is used in the definition of the AIC statistic for selecting the models. The
default value of 0 means that the error variance is estimated using maximum likelihood.
regClimateChem uses the default value.

• direction. This determines the mode of stepwise search. It can be “both”, “backward”, or
“forward.” The default setting is “both,” indicating both forward and backward stepwise
selection. regClimateChem uses the default value.

• steps. This defines the maximum number of steps to be considered. It is typically used to stop
the process early. The default is 1000. In most cases, 1000 steps is far more than necessary
to converge on a model. Therefore, regClimateChem uses the default value.

• k. This is the coefficient for the number of degrees of freedom used in the penalty. The default
is k = 2, which gives the AIC. regClimateChem uses k = log(n), where n is the number of
observations. This gives the BIC.

Stepwise selection in the MATLAB codebase is implemented using the stepwiselm function. The
following list defines the stepwiselm parameters, their default values, and the values used in the
MATLAB codebase.

• modelspec. This indicates the starting model using in the stepwise selection. In the MATLAB

codebase, the model with all main terms and no interactions is used as the starting model.

• criterion. This specifies the information criterion used in the stepwise selection. By default,
MATLAB uses the p-value for an F-test of the change in the sum of squared error that results
from adding or removing the term. However, the BIC is used in the MATLAB codebase, as we
are interested in models that focus on prediction.
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• PEnter. This defines the threshold criterion value for adding or removing a term. The default
value for the BIC is 0. In other words, if adding or removing a term decreases the BIC at all,
then that model is selected. The MATLAB codebase uses the default value.

• upper. This defines the largest set of terms to be included in the model. The default setting
is to include interaction terms. The MATLAB codebase uses the default value.

The only major difference in stepwise algorithms is the starting model. In regClimateChem, the
full model with interactions is used as the starting model. In the MATLAB codebase, the model with
main terms and no interactions is used as the starting model. Since main terms are rarely removed
in this application, there is little difference between these two starting points. The regClimateChem
stepwise will simply remove interactions until arriving at the best model, while the MATLAB codebase
will add interactions until arriving at the best model.

It is important to note, however, that some of the MATLAB source code is not publicly visible.
As a result, there are potentially other differences beneath the surface of these two algorithms that
are not discussed here.

3.3 Genetic Algorithm

The genetic algorithm in regClimateChem is implemented using the glmulti package. All genetic
algorithm parameter values that are changed from their glmulti defaults are listed below. If a
parameter value is not listed here, then it is set to the default glmulti value. See the glmulti
documentation for a more complete list of parameters [9].

• marginality. This dictates whether strong hierarchy is to be enforced. Strong hierarchy says
that if a term is included in an interaction, then its main effect must also be included in
the model. By default, this parameter is set to FALSE, but in regClimateChem it is set to
TRUE.

• popsize. This defines the number of models maintained in the population. The default value
for popsize is 100. However, in the CO application, there are only 113 possible models.
Therefore, a smaller than default value is used in regClimateChem, as this was found to
decrease computation time with minimal loss of accuracy. regClimateChem uses a value of
40. Users with larger parameter spaces should increase this value.

• confsetsize. This defines the number of models reported in the confidence set of models. The
default value is 100. However, the CO application is only interested in the best model for
each lagset, so only one model is recorded. In other words, regClimateChem uses a confsetsize
value of 1.

• conseq. This defines the number of iterations without improvement in the stopping criterion
required to stop the algorithm. The default value is 5. In regClimateChem, a value of 6 is
used, as this helps ensure that a global extrema is found.

• imm. This is the rate of immigration in the genetic algorithm. The default value is 0.3,
meaning that 3 in 10 models are produced by immigration. In regClimateChem, a value of
0.35 is used, as this helps ensure that a global extrema is found.

Note that while some testing was performed to select these parameter values, a more thorough
study is ongoing. This ongoing study seeks to optimize all glmulti parameters for the atmospheric
CO application via an extensive parameter space search.

13



4 Scalability Considerations

It is important to include a few notes on the scalability of these algorithms before comparing their
accuracy and timing in Sections 5 and 6.

• First, this technical note only examines the four and five covariate cases. The results presented
for these cases do not necessarily generalize to any number of covariates.

• Stepwise selection is more scalable than heuristic algorithms (like the genetic algorithm). For
instance, the number of models considered in both pure forward and backward selection is
only 1+p(p+1)/2, where p is the number of covariates. This is much lower than the 2p models
considered by best subset selection, an exhaustive search [10]. With the genetic algorithm,
there is no deterministic formula for the number of models that must be considered. As a
result, there is no guarantee on its scalability. Therefore, stepwise selection should likely be
used over the genetic algorithm and the exhaustive search for large parameter spaces.

• The stepwise selection algorithm in MATLAB is slower than the stepwise selection algorithm in
R for the four and five covariate case. Again, this may not be the case for larger parameter
spaces. Furthermore, this difference could be due to extra features in the MATLAB algorithm
that are not publicly visibly. For instance, there might be advanced parallelization features
built into the MATLAB algorithm that make it more appropriate for larger parameter spaces
than the algorithm in R. Furthermore, the MATLAB algorithm might search more of the param-
eter space than the R algorithm. This could potentially explain why the MATLAB algorithm
takes longer to run than the R algorithm, but often finds better models. The timing and
accuracy of these two algorithms will be discussed in more detail in Sections 5 and 6.

• The scalability of these algorithms is an ongoing research topic. Future work will study their
performance on HPC systems with larger parameter spaces.

5 Accuracy Comparison

In this section, we analyze each variable selection algorithm’s ability to find the best model for a
given lagset, or the model with the lowest BIC value. The BIC is used as the selection criterion
because it is well suited to prediction, as discussed in Section 1.

To evaluate each algorithm’s ability to find the best models, we compare them to the exhaustive
search. Recall that the exhaustive search will always find the best model, making it a natural
benchmark for comparison. The comparison is performed as follows:

1. Start with the first lagset in the lag space matrix. Perform variable selection at these lag
values using the exhaustive, genetic, and stepwise algorithms. Each of these three algorithms
will come up with their own “best” (lowest BIC) model for that given lagset.

2. Compare the BIC of the best model found by the non-exhaustive options (genetic and step-
wise) to the exhaustive search. If the BIC values agree, then the non-exhaustive option was
able to find the best model for that particular lagset. If the BIC values do not agree, then
the non-exhaustive option failed to find the best possible model for that particular lagset.

3. Repeat this process for every lagset in the lag space matrix.
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Figure 4 provides a visualization of this comparison using fictitious BIC values. Notice that for
some lagsets, both the genetic and stepwise algorithms agree with the exhaustive search (ie. lagset
“1,1,1,1”). For other lagsets, however, only one of the non-exhaustive option agrees (ie. lagset
“1,1,1,2”). Occasionally, neither non-exhaustive option will agree with the exhaustive search (ie
lagset “1,1,1,3”).
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Figure 4: Visualization of model comparison.

The following subsections present plots that summarize the BIC differences for both the four
and five covariate cases. Note that two stepwise selection algorithms are considered. The first
being the stepwise selection algorithm implemented in the Simonson et al. [2] MATLAB codebase.
The second being the stepwise selection algorithm implemented in regClimateChem.

The plots can be interpreted as follows. The horizontal axis gives the index of each lagset,
ranging from 1 to 4096 in the four covariate case and from 1 to 14336 in the five covariate case.
These lagsets have been sorted such that the BIC of the best model found by the exhaustive search
is increasing as you move from left to right. In other words, the predictive power of the best model
is degrading as you move from left to right. The vertical axis gives the BIC value found by each
search algorithm for a particular lagset. The red and blue points are the BIC values for the best
models found by the exhaustive search and the genetic algorithm, respectively. The orange and
green points are the BIC values for the best models found by the stepwise selection algorithm
implemented in R and the Simonson et al. [2] MATLAB codebase, respectively.

Recall that the exhaustive search always finds the best models and that a low BIC value cor-
responds to a good model. Therefore, the orange, blue, and green points will always be at or
above the BIC value of the red points. When one of the non-exhaustive algorithms agrees with
the exhaustive search at a particular lagset, the non-exhaustive BIC value is not plotted (for visual
clarity). Therefore, the blue, orange, and green points shown in the following plots only correspond
to instances in which the genetic or stepwise algorithms failed to find the best model for a particular
lagset.

We also include plots showing only the best 15 lagsets. Our conclusions from the plots in this
section are discussed in more detail in Section 8.
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5.1 Four Covariates

5.1.1 All Lagsets

Figure 5: Comparison of variable selection algorithms for the African and South American response
regions. Plotted in red are the BIC values of the best model found by the exhaustive search for each
lagset. Plotted in blue, orange, and green are lagsets where one of the non-exhaustive algorithms
failed to find the best model. Summary statistics are displayed on the plot.
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Figure 6: Comparison of variable selection algorithms for the Australasia and Maritime SEA re-
sponse regions. Plotted in red are the BIC values of the best model found by the exhaustive search
for each lagset. Plotted in blue, orange, and green are lagsets where one of the non-exhaustive
algorithms failed to find the best model. Summary statistics are displayed on the plot.

Here we see that the genetic algorithm finds the best model for all but a few lagsets, depending
on the response region. The stepwise algorithms in R and MATLAB have similar performance, with
the MATLAB algorithm finding the best model slightly more often than the R version. Both stepwise
algorithms, however, fail to find the best model much more often than the genetic algorithm.
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5.1.2 Best 15 Lagsets

Figure 7: Zoomed in comparison of variable selection algorithms for the African and South American
response regions. Only the best 15 lagsets are shown here. Plotted in red are the BIC values of
the best model found by the exhaustive search for each lagset. Plotted in blue, orange, and green
are lagsets where one of the non-exhaustive algorithms failed to find the best model. Summary
statistics only take into account the best 15 lagsets.
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Figure 8: Zoomed in comparison of variable selection algorithms for the Australasia and Maritime
SEA response regions. Only the best 15 lagsets are shown here. Plotted in red are the BIC values
of the best model found by the exhaustive search for each lagset. Plotted in blue, orange, and green
are lagsets where one of the non-exhaustive algorithms failed to find the best model. Summary
statistics only take into account the best 15 lagsets.

In the four covariate class, all three non-exhaustive search algorithms happen to agree on the
best lagset. This is promising, as the best lagset is the one selected for the predictive model
in that response region. However, this will not always occur, as non-exhaustive search options
are not guaranteed to find the absolute best model. The user should therefore by wary of using
non-exhaustive search algorithms.
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5.2 Five Covariates

5.2.1 All Lagsets

Figure 9: Comparison of variable selection algorithms for the African and South American response
regions. Plotted in red are the BIC values of the best model found by the exhaustive search for each
lagset. Plotted in blue, orange, and green are lagsets where one of the non-exhaustive algorithms
failed to find the best model. Summary statistics are displayed on the plot.
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Figure 10: Comparison of variable selection algorithms for the Australasian and Maritime SEA
response regions. Plotted in red are the BIC values of the best model found by the exhaustive
search for each lagset. Plotted in blue, orange, and green are lagsets where one of the non-exhaustive
algorithms failed to find the best model. Summary statistics are displayed on the plot.

In the five covariate case, we see worse performance across all non-exhaustive algorithms. This
makes sense, as there are now many more models to consider. The genetic algorithm is again able
to find the best model more often than both of the stepwise algorithms. The MATLAB stepwise
algorithm again performs better than the R stepwise algorithm in most response regions.

21



5.2.2 Best 15 Lagsets

Figure 11: Zoomed in comparison of variable selection algorithms for the African and South Amer-
ican response regions. Only the best 15 lagsets are shown here. Plotted in red are the BIC values
of the best model found by the exhaustive search for each lagset. Plotted in blue, orange, and green
are lagsets where one of the non-exhaustive algorithms failed to find the best model. Summary
statistics only take into account the best 15 lagsets.
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Figure 12: Zoomed in comparison of variable selection algorithms for the Australasia and Maritime
SEA response regions. Only the best 15 lagsets are shown here. Plotted in red are the BIC values
of the best model found by the exhaustive search for each lagset. Plotted in blue, orange, and green
are lagsets where one of the non-exhaustive algorithms failed to find the best model. Summary
statistics only take into account the best 15 lagsets.

In the five covariate case, we see that the non-exhaustive search options do not always find the
best model for the best lagset. As a result, the user should be wary of using non-exhaustive search
methods, especially with larger parameter spaces, as they will not always find the best predictive
model for a given region.
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6 Timing Comparison

In this section, we present the run time for the exhaustive, genetic, and stepwise algorithms. To
expedite this study, certain algorithms were only run once. These values, therefore, have no error
bars associated with them. The algorithms that were run more than once are presented with error
bars corresponding to the mean value ± one standard deviation. The algorithms with error bars
were run four times. Again, our conclusions are discussed in more detail in Section 8.

Computational trials were performed on a personal computer with an Intel Core i7-4510U CPU
@ 2.00GHz, four cores, 8 GB RAM, Ubuntu version 16.04, running 64 bit R version 3.6.2 and 64
bit MATLAB R2019a version 9.6.0.1174912.

Note that we only consider the four and five covariate cases in this technote. However, the
scalability of these algorithms, primarily the genetic and exhaustive search, is an ongoing research
topic.

6.1 Four Covariates

Here we see that the stepwise algorithm in R runs much faster than all other algorithms. The
exhaustive algorithm actually runs slightly faster than the genetic algorithm in the four covariate
case. The MATLAB stepwise algorithm has the longest runtime of all algorithms considered.
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6.2 Five Covariates

Here we see much longer run times, which again makes sense, as there are now many more models
to consider. Both stepwise algorithms run much faster than the genetic and exhaustive algorithms,
with the R version running faster than the MATLAB version. In the five covariate case, we begin
to see the computational benefit of the genetic algorithm over the exhaustive search. With more
predictor variables, this benefit would likely become much more apparent.
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7 Best Predictive Models

In Section 5, we considered the best model for each lagset. This provided many different response-
covariate relationships that we used to compare the variable selection algorithms. However, in
practice we are often only concerned with the best model for the best lagset. As a means of valida-
tion, we compared these best predictive models found by the exhaustive search in regClimateChem

(with four covariates) to the best predictive models reported in Buchholz et al. [1]. The lag values
and predictor variables included in these models agree for all response regions.

The best predictive model for each response region is listed in Table 2. Table 2 includes lag
values, coefficient estimates, and the adjusted R2 value for each response region.

Table 2: The best predictive model for each response region found using the exhaustive search in
regClimateChem.

Australasia Southern Africa South America
Climate Mode Maritime SEA North South Central South Central South

τ

Nino 3.4 1 3 7 7 8 8 8
DMI 8 1 1 4 4 6 1
TSA 5 7 2 2 2 2 2
SAM 1 1 8 2 2 2 5

µ

Constant -0.29 -0.35 0.05 -0.09 0.04 0.13 -0.06

χk ak

Nino 3.4 2.53 1.15 1.45 1.86 1.71 3.14 1.17
DMI 0.67 1.34 0.95 0.79 1.08 3.07 1.19
TSA 0.70 -1.10 -1.86 -1.00 -0.98 -4.84 -0.73
SAM 0.33 -0.19 -0.48 0.40 0.18 0.03 -0.05

χi x χj bij

Nino 3.4 x DMI -4.81 1.55 NS NS 0.73 2.68 NS
Nino 3.4 x TSA NS -2.75 -2.73 -2.26 -3.65 -7.60 -1.72
Nino 3.4 x SAM NS NS NS NS NS -1.01 -0.49
DMI x TSA -5.83 NS NS 2.88 NS NS NS
DMI x SAM NS NS NS NS NS NS -0.69
TSA x SAM -2.88 -1.29 NS NS 2.97 4.45 NS

Model Fit Statistics

Adjusted R2 0.72 0.69 0.56 0.46 0.57 0.60 0.58
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8 Conclusions

In this document we have described updates to the data driven variable selection code used to
model CO concentrations in Buchholz et al. [1]. These updates include the following main items.

• The code is now written in an open source R package.

• It is now possible to create models with multiple lags of a single climate mode.

• An exhaustive search algorithm was added.

• An additional non-exhaustive search option was added. The user can now select between a
genetic algorithm and stepwise selection.

In Section 5.1 (the four covariate case), we see much better results from the genetic algorithm
than the stepwise algorithms. The stepwise algorithm in R fails to find the best model 30-55% of
the time, and the stepwise algorithm in MATLAB fails to find the best model 25-55% of the time,
depending on the response region. The genetic algorithm, on the other hand, fails to find the
best model less than 1% of the time in all response regions. Furthermore, in Section 6.1 (the
four covariate case), we see that the genetic algorithm runs about 25% faster than the stepwise
algorithm in MATLAB. The stepwise algorithm in R, however, runs about 80% faster than the stepwise
algorithm in MATLAB. We also see that the exhaustive search runs faster than the genetic algorithm
and the stepwise algorithm in MATLAB in the four covariate case. Optimizing the genetic algorithm
for the climate chemistry application is an ongoing research topic. Ideally, the genetic runtime will
fall between the stepwise search in R and the exhaustive search. This way, the genetic algorithm
can serve as a slightly more accurate option than stepwise selection, while still providing results
faster than the computationally expensive exhaustive search.

In Section 5.2 (the five covariate case), we see that the genetic algorithm fails to find the
best model 13-20% of the time. This percentage is much higher than the four covariate case, but
understandable since adding a fifth covariate vastly increases the number of possible models. The
stepwise search in R fails to find the best model 55-65% of the time, and the stepwise search in
MATLAB fails to find the best model 35-65% of the time. In Section 6.2 (the five covariate case),
we see that the genetic algorithm runs about 8% faster than the exhaustive search. With five
covariates, the computational benefit of the genetic algorithm begins to appear, as it is slighter
faster than the exhaustive method. This benefit would be more apparent with more covariates.
The stepwise search in MATLAB runs about 80% faster than the exhaustive search, and the stepwise
search in R runs about 90% faster. In the five covariate case, the scalability of the stepwise search
becomes blatantly apparent. Again, the ongoing optimization study into the genetic algorithm
seeks to adjust the hyperparameters so that the runtime of the genetic algorithm falls more equally
between the stepwise and exhaustive run times.

Examining the best 15 lagsets in both the four and five covariate cases reveals that the non-
exhaustive search algorithms do not always find the best model for the best lagset in a given
response region. This is seen more clearly in the five covariate case. Therefore, the user should
keep in mind that the non-exhaustive search options will not always find the best predictive model
for a given response region.
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Finally, it is important to emphasize that these results are only for the four and five covariate
cases. The performance of the two non-exhaustive options might change for scenarios with many
more predictor variables or a different relationship between the response and the predictors.

These results can be summarized as follows:

• Three variable selection algorithms are provided in the regClimateChem R package: an ex-
haustive search, a genetic algorithm, and a stepwise search.

• The exhaustive search by definition always finds the best model, regardless of the number
of covariates. In the four covariate case, it runs faster than the genetic algorithm and the
stepwise search in MATLAB. In the five covariate case, it is slower than all of the non-exhaustive
search options.

• The genetic search is able to find the best model more often than the two stepwise selection
algorithms. In the four covariate case, it is faster than the stepwise selection algorithm in
MATLAB. In the five covariate case, it is faster than the exhaustive search.

• The stepwise search in R is the worst algorithm in terms of finding the best model for each
lagset, but it is the most computationally efficient. In both the four and five covariate cases,
it runs faster than all other variable selection techniques.

• The user can select between these variable selection algorithms depending on their computa-
tional resources and their need for model accuracy.

Based on these results, we present the regClimateChem package as an option for R users inter-
ested in studying the variability in climate chemistry.
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Appendix A Description of Updated Configuration File

The configuration file is a convenient way to set the various parameters used in regClimateChem.
A few changes have been made to the configuration file described in Simonson et al. [2]. The new
R configuration file contains the following variables that need to be defined by the user (or left at
their default values).

• response.data

– name.of.region: The name of the response region to analyze. Choose either Cen-
tralSAfrica, EastSAmerica, MaritimeSEA, NorthAustralasia, SouthAustralasia, South-
SAfrica, or WestSAmerica.

– file.path: Path to the response region CO concentration .csv file.

– file.name: Name of the response region CO cencentration .csv file.

• index.data

– name.of.index: The full name of the climate modes to be included in the analysis. Use
spaces and proper formatting.

– short.name: Abbreviation for each climate mode.

– file.path: Path to the climate mode index .csv file.

– file.name: Name of the climate mode index .csv file.

• model.parameters

– output.period.start: This is the first month of the time period in which we want to
explain CO variability.

– output.period.end: This is the last month of the time period in which we want to
explain the CO variability.

– regression.selection.criterion: The criterion that is used to define the “best”
model for a given lagset. Choose either “bic” or “aic”.

– search.algorithm: The algorithm used to perform variable selection. Use “h” for the
exhaustive search, “g” for the genetic search, or “s” for the stepwise selection.

– optimization.criterion: The criterion that is used to select the best lagset and cor-
responding model. Use either “bic” or “adjr2”.

– lag.user.limits: The minimum and maximum lag values that should be considered
for each climate mode.

– should.search.parallel: Use “TRUE” to perform the lag space search in parallel.
Use “FALSE” to perform the lag space search in serial.

– number.of.cores.to.use: The number of cores to devote to the parallel lag space
search. By default, this is set to the number of cores available on the user’s machine
minus one.

– smoothing.parameter: Window size to use when performing a moving average of the
climate mode index data. Note that this number is the number of data points on each
side of the current point to be averaged, not the total window size.

– max.num.terms: The maximum number of terms to consider per climate mode. If set
to one, then at most one lag value of each climate mode will be included. If set to two
or more, then multiple lags of a single climate mode will be considered.
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Appendix B Codebase Availability

The R package regClimateChem can be accessed from GitHub. The repository can be found at:

https://github.com/wsdaniels/regClimateChem.git

This repository contains the following:

• single run config file.R: This configuration file contains the settings used in the run once.R
script.

• run once.R: This script will run the code once, based on the setting in the single run config file.R.

• run multiple.R: This script will run the code multiple times, varying certain parameters.

• data: This directory contains CO and climate mode index data used in the analysis.

• R: This directory contains the R functions used in the analysis.
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