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Motivation
• Large burn events (like the 2019/2020 Australia fires) are the
primary source of atmospheric carbon monoxide (CO) in the
Southern Hemisphere.
•Atmospheric CO contributes to the greenhouse effect and has
negative health impacts for both humans and vegetation.
• Predictive CO models can help countries or cities prepare for large
burn events.

Observational Data Sets
• Large burn events are closely tied to the climate through wind and
sea surface temperatures, as hot weather dries out vegetation.
• Climate indices provide useful metrics for summarizing the
aperiodic changes in climate.

• CO measurements are taken from the MOPITT instrument on board
the Terra satellite. They are aggregated into seven biomass burning
regions [1].
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Figure 1. Boxes in (a) define the regions of interest and are overplotted on a map of average September to December
total column CO from Measurements of Pollution in The Troposphere V7-thermal infrared between 2001 and 2016. Note
that we select only retrievals over land within these boundaries. MSEA = Maritime SEA; NAus = North Australasia;
SAus = South Australasia; CSAf = Central Southern Africa; SSAf = South Southern Africa; CSAm = Central South America;
SSAm = Southern South America. The base plot in (b) is standard deviation of total column CO that corresponds to (a),
overplotted in red boxes that define regions of the sea surface temperature climate indices, TSA, DMI, and Niño3.4.
White arrows schematically depict the displacement of westerly winds associated with the atmospherically defined
climate index, SAM. Climate indices are described in section 2.2. TSA = Tropical South Atlantic; DMI = Dipole Mode
Index; SAM = Southern Annular Mode.

are described in Deeter et al. (2017). MOPITT products are publicly available through several repositories
linked via http://terra.nasa.gov/about/terra-instruments/mopitt or https://www2.acom.ucar.edu/mopitt.

The stable systematic bias found for the MOPITT total column product makes it well suited for analyzing
long time series (Deeter et al., 2017). In order to reduce systematic and random error, we select daytime,
land-only retrievals from the thermal infrared (TIR) product (MOPITT Science Team, 2013). Daytime retrievals
have higher sensitivity to CO due to higher thermal contrast compared with nighttime retrievals (Deeter et al.,
2007). Restricting analysis to land-only scenes minimizes the effect of different retrieval sensitivity between
land and water scenes. The TIR product has lower random error compared to the near-infrared or multispec-
tral products (Deeter et al., 2014) and similar sensitivity as the multispectral product to total column CO from
large-scale fires. Averaging over large areas and month time scales further reduces random error to negligi-
ble amounts. We find that spatial averages over large areas, such as the regions chosen in this study, produce
equivalent CO timeseries and anomalies for TIR and multispectral products (not shown). Therefore, while we
only analyze the TIR product, results will translate to the multispectral product.

For each region of interest, a spatial and climatological average of monthly total column CO between 2001
and 2016 is determined and subtracted from monthly average values to produce a time series of monthly CO
anomalies. The anomaly data sets developed and used in this study are publicly available through the National
Center for Atmospheric Research (NCAR) Research Data Archive (https://rda.ucar.edu/datasets/ds682.0, doi:
10.5065/D61N7ZX4).
2.1.1. Selected Regions
We investigate IAV in CO for four main biomass burning regions in the tropics and Southern Hemisphere:
Maritime SEA (10–10∘N, 90–160∘E), Australasia (50–10∘S, 110–180∘E), southern Africa (40–10∘S, 0–60∘E)
and South America (60–5∘S, 80–32∘W; Figure 1). The latter three regions required splitting into subregions in
order to account for different CO variability patterns within each subregion. In general, we split these regions
into tropical and temperate regions at 25∘S. While the tropical regions tend to have more biomass burning
than the temperate ones, temperate regions are more populated and air quality has a greater potential for
impacts on human health.

Australasia is split into two regions, approximately into tropical (North Australasia: 25–10∘S, 110–180∘E) and
temperate (South Australasia: 50–25∘S, 110–180∘E) subregions. The frequency of large fires is substantially
higher in the tropical subregion compared to the temperate subregion (Russell-Smith et al., 2007), and peak
fire seasons differ between the subregions (Langmann et al., 2009; Russell-Smith et al., 2007). Additionally,
the majority of agricultural activities are found below 25∘S (Bryan et al., 2016) as well as more than 85%
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Statistical Model
We use a multiple linear regression model with first order interaction
terms to explain the relationship between atmospheric CO and
month-averaged climate indices [1, 2].

CO(t) = μ+
∑︁
k

ak · χk(t - τk) +
∑︁
i,j

bij · χi(t - τi) · χj(t - τj)

• CO(t) is the CO anomaly in a given response region at time t
•𝜒 are the climate indices
• 𝜏 is the lag value for each index in months

Models are able to explain 50-75% of atmospheric CO variability,
depending on the response region [1].

Improvements to Model Selection Codebase

Updates to the model selection codebase have been implemented in
the R package southernHemisphereCO.
•Multiple lags of a single climate mode index can now be included.
• Exhaustive search added.
•Genetic search added in addition to stepwise selection [3].

Exhaustive search always finds the “best” model. Performance of the
other model selection techniques is assessed as follows:
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Comparison of Model Selection Capabilities

For each possible lagset, the “best” model found by stepwise
selection (MATLAB), stepwise selection (R), the genetic algorithm (R),
and an exhaustive search (R) are compared. Note that a lower BIC
value corresponds to a better model.

Summary of runtimes in the Maritime SEA response region:

Search Algorithm Mean Run Time ±1 standard deviation [minutes]
Stepwise (R) 1.9 ±0.04

Exhaustive (R) 7.1 ±0.11
Genetic (R) 7.5 ±0.01

Stepwise (MATLAB) 10.4 ±0.01

Future Work
1. Add MJO climate mode index and compare different ENSO indices.
2. Add an anthropogenic index related to burning.
3. Explore multiple lags of a single index (be careful of correlation).
4. Test models on 2019/2020 Australia fires.
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