

Motivation

- Large burn events (like the 2019/2020 Australia fires) are the primary source of atmospheric carbon monoxide (CO) in the Southern Hemisphere.
- Atmospheric CO contributes to the greenhouse effect and has negative health impacts for both humans and vegetation.
- Predictive CO models can help countries or cities prepare for large burn events.

Observational Data Sets

- Large burn events are closely tied to the climate through wind and sea surface temperatures, as hot weather dries out vegetation.
- Climate indices provide useful metrics for summarizing the aperiodic changes in climate.

• CO measurements are taken from the MOPITT instrument on board the Terra satellite. They are aggregated into seven biomass burning regions [1].

Improving Atmospheric Carbon Monoxide Models

William Daniels¹, Dorit Hammerling¹, Rebecca Buchholz²

Colorado School of Mines¹, National Center for Atmospheric Research²

Statistical Model

We use a multiple linear regression model with first order interaction terms to explain the relationship between atmospheric CO and month-averaged climate indices [1, 2].

$$CO(t) = \mu + \sum_{k} a_k \cdot \chi_k (t - \tau_k) + \sum_{i,j} b_{ij} \cdot \chi_i (t - \tau_i) \cdot \chi_j (t - \tau_j)$$

- CO(t) is the CO anomaly in a given response region at time t
- χ are the climate indices
- $\bullet au$ is the lag value for each index in months

Models are able to explain 50-75% of atmospheric CO variability, depending on the response region [1].

Improvements to Model Selection Codebase

Updates to the model selection codebase have been implemented in the R package southernHemisphereCO.

- Multiple lags of a single climate mode index can now be included.
- Exhaustive search added.
- Genetic search added in addition to stepwise selection [3].

Exhaustive search always finds the "best" model. Performance of the other model selection techniques is assessed as follows:

Comparison of Model Selection Capabilities

For each possible lagset, the "best" model found by stepwise selection (MATLAB), stepwise selection (R), the genetic algorithm (R), and an exhaustive search (R) are compared. Note that a lower BIC value corresponds to a better model.

Ranked Best to Worst in Terms of Exhaustive Model BIC

Summary of runtimes in the Maritime SEA response region:

Search Algorithm Stepwise (R) Exhaustive (R) Genetic (R)

Stepwise (MATLAB)

- - 7.1 ± 0.11

Future Work

- 2. Add an anthropogenic index related to burning.
- 4. Test models on 2019/2020 Australia fires.

References

- Journal of Geophysical Research: Atmospheres, 123, 2018.
- [2] Peter Simonson and Dorit Hammerling. expense

NCAR Technical Notes, 2018.

[3] Vincent Calcagno and Claire de Mazancourt. glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34(12):29, 2010.

Mean Run Time ± 1 standard deviation [minutes] 1.9 ± 0.04 7.5 ± 0.01 10.4 ± 0.01

1. Add MJO climate mode index and compare different ENSO indices. 3. Explore multiple lags of a single index (be careful of correlation).

[1] R. R. Buchholz, D. Hammerling, H. M. Worden, M. N. Deeter, L. K. Emmons, D. P. Edwards, and S. A. Monks. Links between carbon monoxide and climate indices for the southern hemisphere and tropical fire regions.

Refactoring data-driven model selection code for improvements in interpretability, generality, and computational